The generator matrix
1 0 0 0 1 1 1 X 1 1 0 1 1 0 X 1 1 1 0 X X 0 1 1 X 0 1 X 1 1 1 1 1 X 1 0 X 1 1 0 1 0 1 0 1 0 X 1 1 X 1 1 1 X 1 1 1 X 1 0 1 1 0 1 1 1 0 1 X 0 1 1 1 X X 1
0 1 0 0 0 0 0 0 1 1 1 1 X+1 1 1 X 0 1 X 0 1 1 X 1 1 0 1 1 1 X X X+1 X+1 1 0 X 1 0 X+1 1 X 1 1 X X X 0 1 0 1 1 1 0 X 1 1 X+1 1 X 1 X+1 X+1 X X X X 1 X 0 1 1 X+1 1 1 1 X
0 0 1 0 0 1 X+1 1 X+1 1 X 0 0 1 1 X 0 X+1 1 X 1 X X+1 0 X 1 1 X+1 X 1 X+1 X X+1 X+1 X X 0 X 0 0 1 0 1 1 0 1 1 0 1 1 1 X+1 X 1 X+1 X 0 0 X X 1 1 1 X X X X 0 X X X+1 1 0 0 0 0
0 0 0 1 1 1 0 1 X X+1 1 1 0 X+1 0 0 X+1 X 0 1 X+1 X 0 0 1 1 1 0 X X 1 1 X 0 0 1 X X+1 X 0 X+1 1 X+1 X X+1 1 X+1 0 1 X X 1 1 1 X X+1 X+1 X+1 1 X 1 1 0 X 0 X+1 X X 1 0 1 0 X 0 0 1
0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X 0 X X 0 0 X 0 X 0 X X X X 0 X 0 X X 0 0 X 0 X X X X 0 X 0 0 X X 0 X X X 0 X 0 X X 0 0 0 X X 0 0 X 0 X 0
0 0 0 0 0 X X 0 X X 0 X X 0 0 X X 0 X X X X 0 0 X 0 X X 0 X 0 X 0 0 X 0 0 0 X X 0 X 0 X X 0 X X X X X 0 0 X X 0 0 0 X 0 X 0 X 0 X X X 0 0 X X 0 0 0 X X
generates a code of length 76 over Z2[X]/(X^2) who´s minimum homogenous weight is 69.
Homogenous weight enumerator: w(x)=1x^0+52x^69+76x^70+100x^71+106x^72+80x^73+97x^74+80x^75+53x^76+54x^77+39x^78+32x^79+45x^80+34x^81+28x^82+24x^83+28x^84+24x^85+9x^86+12x^87+20x^88+2x^89+2x^90+8x^91+3x^92+4x^93+4x^94+4x^97+1x^98+2x^101
The gray image is a linear code over GF(2) with n=152, k=10 and d=69.
This code was found by Heurico 1.16 in 0.256 seconds.