LinuxQuestions.org [SOLVED] 'Circle of Squares' programming challenge
 Programming This forum is for all programming questions. The question does not have to be directly related to Linux and any language is fair game.

 04-07-2021, 06:49 PM #1 dogpatch Member   Registered: Nov 2005 Location: Central America Distribution: Mepis, Android Posts: 490 Blog Entries: 4 Rep: 'Circle of Squares' programming challenge In his Amazing Circle thread, igadoter presented us with a circle of data consisting of the numbers 1 thru 32. The amazing part was that each adjacent pair of numbers when summed yielded a perfect square. He asked for a programmatic way to verify that the conditions were met for the particular sequence of 32 numbers that he supplied, which program was offered by danielbmartin. Others, including myself, have wondered about the possibility of programmatically generating such an amazing circle of numbers, so I hereby issue the programming challenge. Here are the rules: 1. The data must be a logical circle or ring of data, in which there is no defined first and last element, and no defined direction or flow (can be clockwise or counter-clockwise); 2. Each element in the ring must be within the defined limits. In this case, between 1 and 32, with each number occurring exactly once (in any order). 3. Each adjacent pair of numbers must sum to a perfect square. [1, 4, 9, etc] 'Adjacent pair' is defined per rule #1 above. That is, if you define the ring as a linear array, the array must 'wrap around' so that the first and last elements are considered logically adjacent. Let's have a little fun with this, and, as others have suggested, maybe carry it further than limits of 1 to 32. Last edited by dogpatch; 04-07-2021 at 06:51 PM. Reason: last note
 04-07-2021, 07:14 PM #2 dogpatch Member   Registered: Nov 2005 Location: Central America Distribution: Mepis, Android Posts: 490 Original Poster Blog Entries: 4 Rep: To start things off, I offer the following data ring class definition, FWIW. This has probably been done before and better, but it's where I'm beginning, as a C++ header, to help me to define and work with a specific ring of data. Code: ```/** Ring class: define Ring (circular array) data type */ typedef char rType; class Ring { public: int rSize; int rHead; // arbitrary start point in ring bool rClockwise; // true=Clockwise, false=Counter-clockwise rType *rElement; // store ring as linear array bool rInit(int AllocSz) { // Alloc ring dynamically if (!((void*)rElement = malloc(AllocSz*sizeof(rType)))) return false; rSize = AllocSz; srand(time(0)); Randomize(); return true; }; void Randomize() { rHead = rand()%rSize; // randomize rHead offset rClockwise = rand()%2; // and direction of flow return; }; int AdvanceIndex(int Index) { // Step index clockwise or counter, wrapping as needed if (rClockwise) { // clockwise (normal order) Index++; if (Index == rSize) Index = 0; // wrap to 0 in linear array } else { // counter-clockwise (descending order) if (!Index) Index = rSize; // wrap to end of linear array Index--; } return (Index); } };``` 2 members found this post helpful.
 04-08-2021, 01:10 AM #3 pan64 LQ Addict   Registered: Mar 2012 Location: Hungary Distribution: debian/ubuntu/suse ... Posts: 22,617 Rep: I would define a check like function which will return true if the sum of the given adjacent pair of numbers is square. But we can have different conditions, later.... Code: ```Ring r; .... bool check(int ix) { int s = r[ix] + r[ix+1]; float f = sqrt((double)s); int i = f; return i == f; }``` https://www.includehelp.com/c-progra...re-or-not.aspx 2 members found this post helpful.
 04-08-2021, 06:56 AM #4 GazL LQ Veteran   Registered: May 2008 Posts: 6,999 Rep: Code: ```\$ !cc cc -Wall -Wextra -O2 amazing.c \$ ./a.out 92 possible pairs that sum to a square: 1, 3 1, 8 1, 15 1, 24 2, 7 2, 14 2, 23 3, 1 3, 6 3, 13 3, 22 4, 5 4, 12 4, 21 4, 32 5, 4 5, 11 5, 20 5, 31 6, 3 6, 10 6, 19 6, 30 7, 2 7, 9 7, 18 7, 29 8, 1 8, 17 8, 28 9, 7 9, 16 9, 27 10, 6 10, 15 10, 26 11, 5 11, 14 11, 25 12, 4 12, 13 12, 24 13, 3 13, 12 13, 23 14, 2 14, 11 14, 22 15, 1 15, 10 15, 21 16, 9 16, 20 17, 8 17, 19 17, 32 18, 7 18, 31 19, 6 19, 17 19, 30 20, 5 20, 16 20, 29 21, 4 21, 15 21, 28 22, 3 22, 14 22, 27 23, 2 23, 13 23, 26 24, 1 24, 12 24, 25 25, 11 25, 24 26, 10 26, 23 27, 9 27, 22 28, 8 28, 21 29, 7 29, 20 30, 6 30, 19 31, 5 31, 18 32, 4 32, 17 Sequence: 1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15 \$``` First creates a linklist of all possible pair combinations, then recursively finds the next value in the sequence backtracking if it dead-ends. P.S. I left the result in an array. It would be trivial to create a linklist from it and then point the last entry back to the first to make it circular, but it seemed kind of pointless, and I was more interested in doing the sequence generation functions. update: attached program now takes start value as first arg . Last edited by GazL; 04-15-2021 at 07:05 AM. 2 members found this post helpful.
04-08-2021, 07:54 AM   #5
dogpatch
Member

Registered: Nov 2005
Location: Central America
Distribution: Mepis, Android
Posts: 490

Original Poster
Blog Entries: 4

Rep:
Quote:
 Originally Posted by GazL First creates a linklist of all possible pair combinations, then recursively finds the next value in the sequence backtracking if it dead-ends.
I created my list of pairs manually. Otherwise, this is precisely what i've been trying since early yesterday. But so far, it dead ends every time.

If i suspend randomness, it seems to make a big difference what digit i start with, which intuitively should not be. In at least two cases, i've gotten as far as a 31 byte array:
Code:
```
8 28 21 15 10 26 23 13 12 24 25 11 14 22 27 9 16 20 29 7 18 31 5 4 32 17 19 30 6 3 1
28 21 15 10 26 23 13 12 24 25 11 14 22 27 9 16 20 29 7 18 31 5 4 32 17 19 30 6 3 1 8```
which, as you can see, does indeed wrap around to form a ring of squares, and is a different order than the original amazing circle. But there are only 31, not 32 digits. The missing digit is 2, which does not fit into any point in the 31 byte circle. There are a number of other circles of fewer than 32 digits; that doesn't meet the challenge.

I haven't yet figured out why i can't get the above sequence if i start with, say, '21' or some other digit. Perhaps my backtracking logic need some tweaking. Or perhaps a completely different approach. If you get a full 32 byte circle, I'd love to see your code.

1 members found this post helpful.
04-08-2021, 11:13 AM   #6
GazL
LQ Veteran

Registered: May 2008
Posts: 6,999

Rep:
Quote:
 Originally Posted by dogpatch If you get a full 32 byte circle, I'd love to see your code.
Attached to post #4 (now updated to take a start arg).

Code:
```\$ cc -Wall -Wextra -O2 amazing_circle.c
\$ for i in {1..32}
> do
>   ./a.out \$i | tail -2
> done
Sequence:
1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15
Sequence:
2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23
Sequence:
3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13
Sequence:
4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32
Sequence:
5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31
Sequence:
6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15, 1, 8, 28, 21, 4, 32, 17, 19, 30
Sequence:
7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29
Sequence:
8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28
Sequence:
9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27
Sequence:
10, 15, 1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26
Sequence:
11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15, 1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25
Sequence:
12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24
Sequence:
13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12
Sequence:
14, 2, 23, 26, 10, 15, 1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22
Sequence:
15, 1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10
Sequence:
16, 9, 27, 22, 14, 2, 23, 26, 10, 15, 1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20
Sequence:
17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15, 1, 8, 28, 21, 4, 32
Sequence:
18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15, 1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31
Sequence:
19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30
Sequence:
20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15, 1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29
Sequence:
21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15, 1, 8, 28
Sequence:
22, 14, 2, 23, 26, 10, 15, 1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27
Sequence:
23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26
Sequence:
24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25
Sequence:
25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15, 1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24
Sequence:
26, 10, 15, 1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23
Sequence:
27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22
Sequence:
28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21
Sequence:
29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20
Sequence:
30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15, 1, 8, 28, 21, 4, 32, 17, 19
Sequence:
31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18
Sequence:
32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17
\$```
This may not be all possible sequences, my code just returns the first complete valid sequence it finds for each start point.

I'll look forward to seeing other approaches.

2 members found this post helpful.
 04-08-2021, 12:06 PM #7 pan64 LQ Addict   Registered: Mar 2012 Location: Hungary Distribution: debian/ubuntu/suse ... Posts: 22,617 Rep: I did not check all of them, but they look identical (just the first number is different, but the order is the same).
 04-08-2021, 12:23 PM #8 astrogeek Moderator   Registered: Oct 2008 Distribution: Slackware [64]-X.{0|1|2|37|-current} ::12<=X<=15, FreeBSD_12{.0|.1} Posts: 6,292 Blog Entries: 24 Rep: I have not yet had a chance to write any code, or even decide what I want to write! But I did write on paper a list of all the possible pairings which sum to perfect squares and thinking about what I see in that list leads to a set of constraints for generating a complete ordering, as well as placing limits on the number of integers in the ring (32 may represent a limit!). I'll defer posting my own observations but offer the following helpful hints: * There aren't really a great number of choices - the possible pairs are tightly constrained in "families" of number of choices * Each choice, where there is a choice, further constrains the next choice * Using the clues suggested by the above list, think in terms of segments (arcs) of one or more pairs, then join the segments On paper I was able to find (generate) a 32 number solution quickly (or perhaps accidentally!) Last edited by astrogeek; 04-08-2021 at 12:29 PM. Reason: arcs 1 members found this post helpful.
04-08-2021, 12:41 PM   #9
GazL
LQ Veteran

Registered: May 2008
Posts: 6,999

Rep:
Quote:
 Originally Posted by pan64 I did not check all of them, but they look identical (just the first number is different, but the order is the same).
My routine is deterministic with no random element, so one should expect to see common sequences of varying length reoccurring when it is possible. It will only diverge when an already used number forces a different path. Look closer and you'll see this to be true.

 04-09-2021, 04:11 AM #10 astrogeek Moderator   Registered: Oct 2008 Distribution: Slackware [64]-X.{0|1|2|37|-current} ::12<=X<=15, FreeBSD_12{.0|.1} Posts: 6,292 Blog Entries: 24 Rep: I have written a C routine which implements my thoughts on building the circle from segments (refined pencil and paper method). Instead of trying all possible combinations as Gazl has done, I successively pair everything that is fully deterministic and then test for any left overs. The segments are doubly linked lists and the strategy is: 1. Connect all deterministic pairings into segments (those integers with only two possible pairing partners) 2. Connect all deterministic segment end pairs (segment ends with only one possible partner) 3. If the result is a ring then there is only one solution and its mirror, it is fully deterministic. When run it produces the result below. The numbers in parenthesis are the sum of leading and trailing pairs. I set the circle entry to 4 only to orient the result with the original post's example, but it is a doubly linked ring of integers. Code to follow after sleep! Code: ```./circle 4 (25, 36) 32 (36, 49) 17 (49, 36) 19 (36, 49) 30 (49, 36) 6 (36, 9) 3 (9, 16) 13 (16, 25) 12 (25, 36) 24 (36, 49) 25 (49, 36) 11 (36, 16) 5 (16, 36) 31 (36, 49) 18 (49, 25) 7 (25, 36) 29 (36, 49) 20 (49, 36) 16 (36, 25) 9 (25, 36) 27 (36, 49) 22 (49, 36) 14 (36, 16) 2 (16, 25) 23 (25, 49) 26 (49, 36) 10 (36, 25) 15 (25, 16) 1 (16, 9) 8 (9, 36) 28 (36, 49) 21 (49, 25)``` Last edited by astrogeek; 04-09-2021 at 04:37 AM. 1 members found this post helpful.
04-09-2021, 05:41 AM   #11
pan64

Registered: Mar 2012
Location: Hungary
Distribution: debian/ubuntu/suse ...
Posts: 22,617

Rep:
Quote:
 Originally Posted by GazL My routine is deterministic with no random element, so one should expect to see common sequences of varying length reoccurring when it is possible. It will only diverge when an already used number forces a different path. Look closer and you'll see this to be true.
those are all identical:
http://paste.ubuntu.com/p/SPtYcSByZd/

04-09-2021, 07:24 AM   #12
Senior Member

Registered: Sep 2006
Location: wroclaw, poland
Distribution: many, primary Slackware
Posts: 2,717
Blog Entries: 1

Rep:
Quote:
 Originally Posted by GazL First creates a linklist of all possible pair combinations, then recursively finds the next value in the sequence backtracking if it dead-ends. P.S. I left the result in an array. It would be trivial to create a linklist from it and then point the last entry back to the first to make it circular, but it seemed kind of pointless, and I was more interested in doing the sequence generation functions. update: attached program now takes start value as first arg .
I disabled pairs printing. Just here what I got
Code:
```% for i in `seq 7` ; do ./a.out \$i >> sequences ; done
% cat sequences
Sequence:
1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15,
Sequence:
2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23,
Sequence:
3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13,
Sequence:
4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32,
Sequence:
5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29, 7, 18, 31,
Sequence:
6, 3, 13, 12, 24, 25, 11, 5, 31, 18, 7, 29, 20, 16, 9, 27, 22, 14, 2, 23, 26, 10, 15, 1, 8, 28, 21, 4, 32, 17, 19, 30,
Sequence:
7, 18, 31, 5, 11, 25, 24, 12, 13, 3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1, 15, 10, 26, 23, 2, 14, 22, 27, 9, 16, 20, 29,```
Above 32 it doesn't work. So all sequences by your program are
Code:
`% for i in `seq 32` ; do ./a.out \$i ; done`
so there are only up to 32 all of them? Program is deterministic.

edit: but they are essentially the same - it's circle - if sequences differ only by left/right shift.

edit: so the question is about two sequences being the same - say 1,2,3,1,2,3,1,...should be considered the same as 2,3,1,2,3,1,...

oh men look at this
Code:
```1, 8, 28, 21, 4, 32, 17, 19, 30, 6, 3,
3, 6, 30, 19, 17, 32, 4, 21, 28, 8, 1,```

Last edited by igadoter; 04-09-2021 at 07:42 AM.

 04-09-2021, 07:42 AM #13 GazL LQ Veteran   Registered: May 2008 Posts: 6,999 Rep: not identical. there is reversal on some sequences. I never claimed it would find multiple sequences, only that it would generate a valid result given any start point.
 04-09-2021, 07:53 AM #14 igadoter Senior Member   Registered: Sep 2006 Location: wroclaw, poland Distribution: many, primary Slackware Posts: 2,717 Blog Entries: 1 Rep: Look carefully. All these above sequences are in fact the same up to mirror. It is not difficult to create up to test that the above sequences are the same up to mirroring. The first starts with 1 reaches 2 - now read backward from this point and compare with sequence starting with 2 - they are the same. Edit: For me it looks like all these sequences are the same - and the same as original sequence. So seems tha GazL showed us - computer proof - there is only one such sequence. If there are no other possibilities. Congrats! But if it is true - challenge is finished. Edit: here what is more challenging #n - number of different sequences with the property as amazing circle for given n - seems that #32 = 1 - only one sequence. What about #123? Reasonable sequence is when there is algorithm to compute it - say Fibonacci - there is page on internet with "all" up to date known sequences - if you will find new one - fame awaits you. Last edited by igadoter; 04-09-2021 at 08:09 AM.
04-09-2021, 12:44 PM   #15
dogpatch
Member

Registered: Nov 2005
Location: Central America
Distribution: Mepis, Android
Posts: 490

Original Poster
Blog Entries: 4

Rep:
Have to credit Gazl with first meeting the challenge of generating a valid 32 element circle of squares. But, with his own caveat:
Quote:
 Originally Posted by GazL This may not be all possible sequences, my code just returns the first complete valid sequence it finds for each start point.
I will try to study Gazl's code to understand why my (similar) approach didn't work. Meanwhile will try to employ something more like Astrogeek's:

Quote:
 Originally Posted by astrogeek * There aren't really a great number of choices - the possible pairs are tightly constrained in "families" of number of choices * Each choice, where there is a choice, further constrains the next choice * Using the clues suggested by the above list, think in terms of segments (arcs) of one or more pairs, then join the segments
Quote:
 Originally Posted by astrogeek 1. Connect all deterministic pairings into segments (those integers with only two possible pairing partners) 2. Connect all deterministic segment end pairs (segment ends with only one possible partner) 3. If the result is a ring then there is only one solution and its mirror, it is fully deterministic.
This approach sounds more likely to generate multiple sequences, if such multiple sequences exist, or to definitively prove that there is only one valid 32 element Ring. Keeping in mind that every valid Ring can be expressed as an array of 64 permutations, for 32 head points * 2 directions.

Quote:
 Originally Posted by astrogeek Code to follow after sleep!

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is Off HTML code is Off Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post iLLuSionZ Linux - Newbie 22 11-18-2003 03:36 PM icyfire Linux - Software 4 09-18-2003 04:22 PM bongo.hickup Linux - Hardware 0 06-13-2003 03:51 AM

LinuxQuestions.org

All times are GMT -5. The time now is 04:47 AM.

 Contact Us - Advertising Info - Rules - Privacy - LQ Merchandise - Donations - Contributing Member - LQ Sitemap -