Bash Script for Evaluating Font Collections against one or more Languages

The script below should run on any contemporary Linux system. Copy the script into a new text file, name it FindFont (or
whatever works for you). Placing it in a location that is already part of your $PATH will make life easier; be sure to set
the execute flag (e.g. using “sudo chmod” or an equivalent command from a file manager GUI). Instructions are found in
the early comments of the code itself as well as in the earlier part of this document.

#!/bin/bash

# FindFont - Find all Fonts containing one or more specified characters;

Frank Oberle ussalaiuaafinu: November 2016

This searches through each .ttf or .otf in some specified directories (see Where2Look below) to
find and list all fonts containing a defined set of characters. Several other attributes of each
"matching" font are listed as well.

PURPOSE: It is often useful to easily determine which fonts have support for one or more scripts and,
how correctly each of those fonts reports its support to an operating system or application.
If, for instance, it is necessary to combine Greek, Thai, and Hindi in a single document, it
would be ideal to locate which fonts support all of these in order to achieve some level of
"harmony." Unfortunately, even though many utilities exist to look within single fonts, I've
found none that would look through several at once. Furthermore, a significant number of fonts
don't correctly report which languages or scripts they provide support for (those mean quite
different things, but that's outside the scope of a shell script comments section). Hence, this
primitive, but useful shell script.

Fonts that don't correctly report thier contents and capabilities are often subject to being
unceremoniously replaced by word processors such as Libre/OpenOffice Writer and others.

ALSO: By default (but can be changed by setting variable values at the beginning), the script will
generate sparate text files: one containing a simple list of all matching fonts that report all
of their capabilities correctly, and another containing a list of fonts that may have structural
problems causing them to report their capabilities incorrectly, incompletely, or not at all.
This latter should be reviewed to determine if these fonts should be repaired or replaced.

This also generates an .fodt file (listing the "matching" fonts) that can be loaded into a word

(optional) processor as the basis for a "font sample" document. Unfortunately, although many available
word processors can open and read .odt files, there are none I'm aware of that will permit all
of the fonts to be displayed correctly, making this a somewhat quixotic effort.

LibreOffice Writer, for instance, "helps" out by making apparently random substitutions of the
fonts when it encounters a "foreign" character set/language or whatever and, even worse, gives
no indication at all that it has done so. Combined with a slavish conformity to the rather odd
and illogical "Complex Text Layout" (CTL) definitions, creating such a "font sample" document
in such a word processor is far more of a bother than it ought to be. Nonetheless, if you have
a "publishing" application, the generated .fodt file may be useful as a starting point.

DEPENDENCIES: The utility ttfdump, installed or available with most Linux distributions and Windows.
The utility fc-query, available for most Linux distributions and many Windows versions
A minimal understanding of the differences among languages, scripts, characters and glyphs;
one reason for this is so that you don't become confused by my blatant disregrd for those
distinctions in order to achieve my immediate goals !!
To add new Script or Language definitions to this script, some knowledge of how to construct
regular expressions is necessary. A pdf document was supplied with this script that explains
the layout of the targets the regular expressions are intended to match.
Finally, the Bash shell, of course. This script should work with any recent version of Linux
and may even work with Microsoft's new bash shell for Windows, since the other utilities
mentioned above are also available for Windows.

USAGE: Right now, this is called as FindFont [1st script/language] [2nd script/language] [3rd ...] etc.
See the convertKeyword() routine below to define what "script/language" means; note that you may
need to add to this "case" statement to suit your own needs. Comments there will (maybe) explain
how. If no parameter is given, this will by default search for fonts containing Thai Unicode
characters; for most users, it probably makes more sense to simply have the script produce usage
instructions in such a case, but I did this for my own selfish purposes so it doesn't. It's easy

enough to change the "if [ $# == ]; then" section in the MAIN SCRIPT DEFINITION ROUTINE below if
you wish to do so.

Currently recognized arguments are these: (case-insensitive, but require a minimum of 4 characters)
Arab[ic], Arme[nian], Bibl[ical (Hebrew)], Cyri[llic], Devalnagari], Fars[i], Gree[k],
Hebr[ew], Hind[1i], Iran[ian], Laot [ian], Pers[ian], Russ[ian], Thai,
Yidd[ish], Box Drawing, Curr[ency], Domi [noes], Frac[tions], Liga[tures], Musi[c]

BUGS: Test Characters and Test Sample Strings in Right-to-Left (RTL) scripts such as Arabic and Hebrew are
handled poorly when assigned to Bash variables. The order of characters in the search list is
reversed, and the order of the words in Sample strings is reversed, although the order of the
characters within the words is maintained. I lost patience attempting to figure out a work—-around so
just be aware that it occurs. It really doesn't affect the purpose of this script as I use it.

References:
Evaluating-fonts-for-multilingual-use.pdf # Document explaining this shell script
http://unicode.org/charts/ # View/download official Unicode charts;
# look up code points by number, etc.

S e S HE Sk e Sk R R o ok o e ok o SR e o R SR R o R ok e o 9 ok Sk ok o S o o oE ok ok o oE oF e o SR oE S o SR Sk o o o ok o o o o o e oF o 9 9E

My own rants:



Pan-Unicode Fonts: These are usually

glyph, having one
http://unifoundry.com/unifont.html

SHe e Sk e e T Sk e S e S He e S

#4##4#4## OPENING: Check if ttfdump and fc-query are installed and,
then
"The ttfdump utility is required but can't be located."

if ! ttfdumpExists=$ (which ttfdump) ;
echo

echo "If it's not installed, try running:"
echo " sudo apt install ttfdump"
echo "
echo "Otherwise, check your path."
exit
fi
if ! fcqueryExists=$(which fc-query); then

echo

echo
echo "Try running:"
echo " sudo apt install fontconfig"
echo "
echo "Otherwise, check your path."
exit

fi

#1if ! fcqueryExists=$ (which Fontaine);

https://bugs.document foundation.org/show_bug.cgi?id=92655

www-sul.stanford.edu/depts/sysdept/info/CODE2000.TTF

(or use whatever package command is appropriate for your

"The fc-query utility is required but can't be located."
"The fc-query utility is part of the fontconfig package"

(or use whatever package command is appropriate for your distro,

# Relevant pdf attachments on this link:
> "General discussion of Complex Text...
> "Detailed steps to reproduce the bugs.

A very nice additional rant from someone I've never met:
https://eev.ee/blog/2015/05/20/1i-

stared-into-the-fontconfig-and-the-fontconfig-stared-back-at-me/
# look up code points by number, etc.
way too large to be of any practical use, but as a benchmark when you

need to see something without worrying about whether the font contains a specific

or two of these available can be helpful.

# Font containing utilitarian (read:
ugly) representations of more Unicode
characters/glyphs than any other font.
Code2000, 2001 & 2002: better looking
and almost as comprehensive as Unifont.

if not, exit with an appropriate message.
# If ttfdump utility is not installed
# Display a warning message
# Display a suggestion to the user
distro, etc.)"

e.g. pacman, yum,

# End the Script without going further
# If fc—query utility is not installed
# Display a warning message

# Display a suggestion to the user
etc.)"

e.g. pacman, yum,

# End the Script without going further

then # If the Fontaine app is not installed
# Display an informational message

but can be useful in analyzing font(s) of interest"

the source code can be freely downloaded:"
//www.unifont.org/fontaine/ - OR - to download it directly"

https://sourceforge.net/projects/fontaine/files/latest/download"

# echo "The Fontaine application is not installed."

# echo "Fontaine is not required for this script,

# echo "without the need to use a full-blown font editor such as FontForge."
# echo "If you are willing and able to compile it,

# echo " For information, see http:

# echo " go to

#fi

#### VARIABLE DECLARATIONS

# The basics

Origin=$ (pwd) Save current directory so we can return
debug="'oFf' Set to 'ON' to debug certain sections

# Where2Look=$ (echo ~/.fonts) Check only User-specific fonts

# Where2Look=$ (echo /usr/share/fonts/truetype) Check only for system fonts (all users)
Where2Look=$ (echo ~/.fonts /usr/share/fonts/truetype) Linux std locations; modify as needed

# Where2Look=$ (echo ~/Documents/Fonts_All) My own stash of uninstalled fonts
Verbosity=1 How much info to report (1, 2, 3)

FODTGen=1

FODTDOC="TestDoc"
FPassGen=1

LLEN="PASS"

SuspectGen=1
SFLFN="SuspiciousFonts.txt"

# Not all of these need declaration in

# Number
declare -i CMIdx
declare —-i NumArgsAccepted
NumArgsAccepted=6
declare -i ArgsFound
ArgsFound=0
# Number
declare -i FontsChecked
FontsChecked=0
declare -i FontsMatched
FontsMatched=0
# Number
declare -i LangIdx
declare -a LangAbbrevList
declare —-a LangList
declare —-a LangsMatched
declare —-i LangMatchFailures
LangMatchFailures=0
declare -i FinalLangCount
# Number
declare —-i OTCapIdx

Currently not implemented
Generate an .fodt file listing fonts
'1' turns it ON; anything else OFF
Created as $0rigin/TestDoc.fodt in the
directory where script was started
'l' creates a file listing 'good' fonts
LangListFileName name completed below
'l' creates listing of 'suspect' fonts
SuspiciousFontListFileName

He e S e S Sk e e e S e S Sk e e Sk

BASH, but just in case someone attempts to convert this to a real app
of Arguments passed to this script on the command line
Int counter for number of arguments
Int counter for upper # of args
ARBITRARY; this is all I ever use
Integer counter: Number of args passed
ArgsFound Counter initialized to O
of Fonts examined
Int counter for # of fonts examined
FontsChecked initialized to O
Int counter for # of matching fonts
FontsMatched initialized to 0O
of Language Codes examined
Pointer for Per-Font Language Arrays
Array of lang codes to be looked for
Per-Font Array of found lang Keywords
Array of matching langs
Int counter for # of unmatchedlangs
LangMatchFailures initialized to O
Integer value for counting langs found
of Open Type Capability Matches and Failures

# Tracks OT capabilities in each font

H= e e e S T H= = S H= = e e S



declare —-a OTFMatches
declare -a OTFMatchFailures
declare —-i MissingOTFMatches
MissingOTFMatches=0
# Number of Character Map Matches and

Array of OTF Capabilty Matches

Array of Open Type Tag

No of Missing Open Type Capability Tags
Initialize Missing OTF Tags to 0
ailures

Array of OTF Capabilty Matches

No of Character Map Match Successes
No of Missing Character Map Entries
MissingCMMatches initialized to 0O
Int counter for # unmatched charsets
CMapMatchFailures initialized to 0

declare —a CMapsMatched
declare -i CMMatchSuccesses
declare -i MissingCMMatches
MissingCMMatches=0
declare —-i CMapMatchFailures
CMapMatchFailures=0

declare —-i FullMatchListIdx
FullMatchListIdx=0

declare —-i FullMatchFlag
FullMatchFlag=1

declare -a FullMatchList

Tracks full matches over all fonts

Int counter for # full matches

Tracks full matches over each font

Assume success until a failure for each

List of fonts showing all requirements
# Cosmetic stuff for screen output

MajorSeparator=$ (printf "=%.0s" {1..128})

MinorSeparator=$ (printf "~%.0s" {1..128}) For separating each font rpt section

MiniSeparator=$ (printf "~%.0s" {1..106}) For separating each summary section

# 36 chars right just; 4 digits right just; open string; line feed

For beginning and end of entire report

e = H= = e e e He = e e S e T e S S

Fmt="%36s %-4s %$s\n" # For use with printf statements below
# Bash doesn't preprocess scripts, so functions like writeSample (), convertKeyword(), and inspectFont () must
# be defined before they are called
# writeSample () writes a sample line/section for each font found to contain the specified character(s) to the
# fodt output file which will serve as the basis for creating a word processor font sample document.
# It assumes that the file has been opened; any other parts of the file are written in line below. This
# function is only called in statements controlled by the value of the $FODTGen variable.
writeSample () # Only required for .fodt creation
echo -e " <text:p >$1</text:p>" >> $DemoDoc # Add this file to our output fodt
# Note the no-break spaces (0x00a0) after <text:p > below; this is so LibreOffice doesn't discard them !
echo -e " <text:p > $2</text:p>" >> $DemoDoc # List actual characters to output fodt
echo -e " <text:p > $3</text:p>" >> $DemoDoc # Add the font Slant, Weight and Width
echo -e " <text:p > Sample Text:$4</text:p>" >> $DemoDoc # Add sample text to our output fodt
echo -e " <text:p/>" >> $DemoDoc # Add a blank line after each font name
} # White space ignored by LO-Writer

convertKeyWord () interprets a processed (uppercase & trimmed) KeyWord to create various required values

Here we can define some scripts of interest; in this context the Script name is used as the variable name,
but we could just as easily give the variables Language names if that makes more sense in context.
This is really cheating, since we're only looking for representative character(s) from particular
Script(s) - which can be misleading, as many Greek characters are present for use with Mathematics
even when full Greek language support isn't present. See comment under "CYRL" in the case statement.

CASE Statement: For testing I've used arbitrary 4 letter abbreviations; this could probably be refined to

use ISO 639 two (639-1) or three (639-2) character language codes for convenience, although
we're really looking for a particular Script here rather than a particular Language. For
quick and dirty purposes, this will suffice for now. (Cyrillic, for instance, is not a
Language, but is a Script used by several Languages, each of which may have its own ISO 639
language code.) See "MAIN SCRIPT DEFINITION ROUTINE" below.

HexCode: These are the hex codes in 0x0000 format representing Unicode values of representative sample
characters that we will search for. This will give a somewhat independent view of what Script (s)
each font contains.

TestChar: These are the actual Unicode glyphs assigned to the $HexCode values above: There are no checks to

see that these actually match those glyphs, so be warned!

CharMap: A bitmap is contained in each font where each bit represents one possible position defined by the
Unicode Standard (http://unicode.org/charts/). A "1" bit means the character is present while a
"0" indicates that it isn't. The output from fc-query is arranged in rows of eight (8) thirty-two
bit words arranged in four bytes each. These bytes (0x00-0xff) do not represent values but simply
positions, so are interpreted differently than you might expect. At the start of each row is an
offset value: if, for example, that value is "000e:" then the bits in that row indicate the
presence or absence of Unicode positions 0x0e00 through Ox0eff. Note that if no bits in the range
of a particular offset value are set, that row is simply not included in the output. Typically,

a row defines the presence of assignments from one to three or more Unicode Planes.
$SCharMap is a regular expression to determine if appropriate matching lines exist.
Examples of how these are formed are given in comments at the end if I remember to include them.

Lang: This is an entirely arbitrary designator that I use for my own convenience; in some cases it isn't

even a language at all. Neither "Cyrillic" nor "Devanagari" for instance are Languages, but Scripts;
and "Ligatures" and "Box Drawing" certainly aren't Languages either. It's just a mnemonic for me.

LangCode: RFC-3066 is the source for the Lang(uage) Codes used below and by the Linux fc-query utility; for

sample listings and values, see https://www.w3.org/International/articles/language-tags/
For Region & Language Codes, see: http://www.il8nguy.com/unicode/language-identifiers.html
For Language Tags: https://www.microsoft.com/typography/otspec/languagetags.htm
and: https://www.microsoft.com/typography/otfntdev/standot/features.aspx
ScriptTag: Part of "capability:" section as reported for a fonts when using fc-query
ISO 15924: 4 char Alpha Script Codes: http://www.unicode.org/iso015924/is015924-codes.html
I am using: otlayout:arab otlayout:cyrl otlayout:dev2 otlayout:deva otlayout:grek
otlayout:hebr otlayout:musc otlayout:thai (Only the last four letters!)
ISO 15924: 3 digit Script Codes: http://www.unicode.org/iso015924/is015924-num.html
See a list at: https://www.microsoft.com/typography/otspec/scripttags.htm
Because the definitions of OFF/OT script tags predate ISO 15924 and Unicode Script property
assignments, the script tags provided by the fonts don't always conform to ISO 15924. The

= S e S T S e T S S S SR S e S Sk o S Sk Sk e T Sk S S SR S e S S e T Sk S e S Sk o S Sk o T T Sk



resolution of conflicting proposals also resulted in alternate tags that essentially refer to
the same Unicode script definitions: for example, ‘deva’ and ‘dev2’ are virtually the same.
Script Tags supposedly indicate the font's ability to properly arrange characters that are
formed from more than one glyph*: a Thai character that needs to have both a vowel and a tone
mark above it; such placement needs to be altered if only one of those is required. It is very
important to remember that that - even if the font reports this ability for a certain script,
it doesn't imply that it does this rearrangment very well - but that's another issue.

* including: composition, decomposition, substitution, smallcaps, alternates, ligatures, et al.

demonstrate certain capabilities if applicable; otherwise it's just that: a sample of the script.

ISO 15295,

which gives both 4 letter and numeric codes, is certainly more appropriate for this utility,

but the likelihood of a typical user knowing these is rather low, so I didn't attempt to do that.

To make things more interesting, many Unicode planes contain glyphs that are not really part of any
spoken language; there are no ISO 15295 script codes for Box Drawing characters, Emoji, Musical Symbols
and similar. So modify this listing to suit whatever identities you wish; just remember to also modify
the Keyword input translation sequences in the next section to suit what you are using.

#
#
#
#
#
#
#
#
# Sample: A sample word or phrase in characters of the Script/Language we are examing; this is used to
#
#
#
#
#
#
#
#
c

onvertKeyWord ()
{
case "S$1" in # Evaluate 1st (only) arg passed in
"ARAB" ) HexCode="0x0639 0x0633 0x0626" # Only chars from basic alphabet
TestChar="¢ o & " # N.B. MUST USE NON-BREAKING SPACES!

i
"ARME" )

i
"BIBL" )

# The following pattern looks only for the basic (ISO 8859-6) Arabic alphabet which, although
# insufficient for "real-world" use, is all that's needed for the purposes of this script.

CharMap="0006:[[:space:]101-9a-£1\{11\} [7£] [£1\{5\}[ef]" # 258/32/15/32/32
Lang="Arabic"

LangCode="ar" # Arabic (ISO 639-1)

# fc-match uses only 'ar': The following are regional language versions:

# ar-LB ar-LY ar-MA ar-MR ar-OM ar-PS ar—-QA ar—-SA ar—-SD ar-SO ar—-SY ar-TD ar-TN ar-YE

# ar—-AE ar-BH ar-DZ ar-EG ar-IL ar—-IN ar-IQ ar-JO ar—-KWw

ScriptTag="arab"

Sample="s,, ;o) | s dige goid |l ¢ weis 5" # "My sample script is written in Arabic"
# RTL Words are reversed when $assigned

What that means essentially is that on a terminal output, the RTL Words, although having their

letters arranged correctly from right to left, are themselves written left to right. In the

fodt file, however, they are shown correctly. I attempted to "fix" this in a number of ways,

e.g. by wrapping the Arabic between RLE (0x202b) or RLO (0x202e) and PDF (0x202c) codes (see

http://www.unicode.org/reports/tr9/) but gave up trying, since it really didn't affect the

purpose for which this script was intended. See comments in other Right-to-Left Scripts.

Arab/160: Arabic Script Unicode blocks: 0x0600-; 0x0750-; 0x08a0-; O0xfb50-; 0xfe70-

H= e e e S T

HexCode="0x0580 0x0583 0x0587" # 258/31/31/16/30
TestChar="p &t u" # N.B. MUST USE NON-BREAKING SPACES!
CharMap="0005:[[:space:]01-9a-f]\{10\}fffe[[:space:]101-9a-f]\{5\}fe7[[:space:]f]\{13\}e"
Interestingly, of the 31 fonts on my system that contain the test characters ($TestChar above)
as well as the language code "hy" ($LangCode below) all but 1 match this pattern. The one that
doesn't match is DejaVuSans-ExtralLight.ttf, which is missing the 0x0559 character ("Armenian
modifier letter left half ring" to use the Unicode term), making the "fe7" portion of the
CharMap pattern "fc7" instead. All 21 of the other DejaVu fonts on my system have this glyph
but I haven't pursued why that might be, since I don't use Armenian. I've included Armenian
only because it shares an fc-query output row (0005:) with Hebrew, and Hebrew is one of the
examples in my pdf "Evaluating Fonts for use in Multi-Lingual Documents" which explains how

to interpret/filter these lines using grep.

Lang="Armenian"

LangCode="hy" # Really! I don't know the origin of "hy"
ScriptTag="armn"

Sample="k0y tf jununiu GG hwjybtptG:" # "Do you speak Armenian?"

# Armenian Script Unicode block: 0x0530-0x058f; Armenian Ligatures are 0xfbl3-0xfbl7

H= = e e S S e e S

HexCode="0x05d0 0x05d3 0x05d8 0x05dd 0x05e9 0x05a3 0x05b3" # 258/6/4/6/6
# This finds fonts with the Hebrew Alphabet AND Cantillation Marks 0x0591-0x05af (xNpnn 'nuyv)

# $TestChar does not include the cantillation marks referenced in $HexCode above because they

# are very difficult to see without being "attached" to a "supporting" character. If such a

# character is used (as in $Sample below), it confuses bash anyway as each is really two

# characters. That's why the mismatch (7 hex codes and only 5 test characters)

# Since the script only actually looks at the hex codes, this really makes no difference.

T

estChar="w o U 7 &"; # N.B. MUST USE NON-BREAKING SPACES!

# RTL Chars are reversed when $assigned
CharMap="0005:[[:space:]101-9a-f1\{37\}fffe[[:space:]101-9a-fI\{5\}f££ff" # Cosmetic concatenation
CharMap=$CharMap" [[:space:]01-9a-£1\{14\}00[[0LI\{2I\}[[078£I\{21\}07£ff" # for printing source

# Regarding the [078f] portion of the pattern above: in addition to the alphabet, a value of:
# : 7 (01 1 1) means only Yiddish Digraphs (0x5f0-0x5f2) are present, no add'l punctuation
# : 8 (1 0 0 0) means only additional punctuation (0x5f3-0x5f4) is present

# : 0 (0 0 0 0) means neither of the above is present

# : £ (1 1 1 1) means both Yiddish Digraphs as well as additional punctuation is present.
Lang="Hebrew";

# From the Jewish 'Shema Yisrael' 'Tnu' Prayer: "May his name be blessed forever and ever."

# Sample="17W 0'NX1 NX17 JNann? aw (N n" # With no markings

Sample="7Tyl 0?iy? ini1d7n Ti1d ow 102" # RTL Words are reversed when $assigned
# Note: If the words are reversed here, they appear in the proper order on the screen and in

# the .fodt file, but the characters within each word are in reverse order. Because some
# characters are altered due to their display order, things can get really bizzare. Sigh!
LangCode="he" # Hebrew (ISO 639-1)

LangCode="he' # Hebrew (ISO 639-1)

# Languages spoken in Israel: ar—-IL (Arabic) en-IL (English) he (Hebrew) yi (Yiddish)



i
"CYRI" )

I
"DEVA" )

i
"GREE" )

i
"HEBR" )

ScriptTag="hebr"

# Hebr/125: Hebrew Script Unicode blocks: 0x0590-0x05ff; 0xfb00-0xfb4f (Presentation forms)
# 0591-05af (Cantillation Marks); 05b0-05c7 (Points and Punctuation));

# 05d0-05ea (Actual alphabet) 05f0-05f4 (Yiddish digraphs g.v. and additional punctuation)

HexCode="0x0411 0x0414 0x042f 0x0496" # 258/83/83/64/83
# Here, this essentially means "Russian" (which points to this case anyway); see note.
TestChar="B IO A X" # N.B. MUST USE NON-BREAKING SPACES!
CharMap="0004:[[:space:]]ffff[[:space:]01-9a-fI\{O\}ffffffff[[:space:]01-9a-f]\{5\}ELfLf"

# Note: Here I'm only looking for the basic Russian alphabetic characters. The "anything{5}"
gaps eliminate checking for some Cyrillic extensions in the ranges from 0x0400-0x040f

# and 0x0450-0x045f (and, of course, beyond); if you care about these $CharMap will

# need to be modified accordingly.

Lang="Cyrillic"

LangCode="ru' # Russian (ISO 639-1)

# Note that "Cyrillic" is a script, not a language; here I am treating it as if it refers to

# the Russian language; for my own use, that makes things easier, but beware!!!

# Other languages that use Cyrillic script:

# az-Cyrl (Azerbaijani), ru-RU (Russian), sr-Cyrl (Serbian), uz-Cyrl (Uzbek)

# Note that Serbian, for example, uses different glyphs for some of its characters - one reason
# this routine is not meant for "production" use.

ScriptTag="cyrl"

Sample="Io6poe yTpo" # "Good Morning"

# Cyrillic Script Unicode block: 0x0400-0x04ff

HexCode="0x0919 0x0921 0x0935"; # 258/4/4/4/4
# Here, this essentially means "Hindi" (which points to this case anyway); see note.
TestChar="¥ € q" # N.B. MUST USE NON-BREAKING SPACES!
CharMap="0009: [[:space:]101-9a-£f]1\{8\}"

# Note:

Lang="Devanagari"

LangCode="hi' # Hindi (ISO 639-1)

# See the first note in the "CYRL" case; this is for my own convenience.

# SOME other (of >120) languages that use Devanagari script:

# kok (Konkani), mr (Marathi), ne (Nepali), pi (Pali), sd-IN (Sindhi) and, of course,

# sa (classical Sanskrit)

ScriptTag="deva" .

Sample="H SHAT ﬁ%?% & o foram v # "My sample script (is) written in Hindi"
The Sample text is displayed correctly in the fodt output, but letters are not joined together
properly on the terminal display.

The # marking the comment is at character position 83, whereas in most other lines it is at
position 69; this is because the character count of the sample is higher than it appears due
to the glyph composition that takes place with this particular Hindi sequence.

Bash decomposes this into individual glyphs on my terminal screen, but the output is rendered
correctly on the .fodt output, or when copied 'as is' from the terminal to LibreOffice Writer
and other applications. I originally thought that was because none of the mono-spaced terminal
fonts on my system report support for ISO 15924 script 'deva' or for the ISO 639-1 language
code 'hi' (which none of them do). I later became convinced it may be because of the terminal
itself; if I set the terminal profile to use FreeSerif (a proportional spaced font that does
report the 15924 and 639-1 codes correctly, the decomposition persists. It is also evident
that the terminal in this case forces the variable width glyphs of FreeSerif into mono-spaced
cells (and looks awful in the process as would be expected). Compare this to Thai below.
Deva/317: Devanagari Script: Unicode blocks: 0x0900-0x097f; Extended block is 0xa8e0-0xa8ff

H= =

He e e e S e S He S Sk e e e

HexCode="0x1f00 0x1f01 Ox1f0f Ox1fal0 Oxlfal Oxlfaf" # # 258/66/66/58/66
TestChar="& & A ¢ g Q" # N.B. MUST USE NON-BREAKING SPACES!
# All of the letters in the standard Greek Alphabet - even many that are identical to Latin

# characters, e.g. B, H, K, O, P, and Y - are used in Mathematics, so simply looking for

# a selection of Greek alphabetic characters won't really indicate support for the Greek

# language. When looking at my own font collection I found 66 fonts that contained all of

# the needed composite characters. All of them did contain the 'el' language code, but only
# 58 of them had the 'grek' Script Tag. Hence, the use of Greek composite characters here.

# The $CharMap below doesn't test for ALL extended Greek characters, but is sufficient...
CharMap="001f:[[:space:]]13f3ffff[[:space:]01-9a-f1\{30\}f£f£" # incl: 1£f00-1£f15 and 1fa0-1fb3
Lang="Greek"

LangCode="el" # Greek ("Ellenic) (ISO 639-1)

# fc-match uses only 'el', but there are el-CY (Cyprus) and el-GR (Greece) codes as well.
# Grek/200: Greek Script Unicode block: 0x0370-0x03ff

# Greek Extended Unicode block: 0x1f00-O0x1fff # MORE IMPORTANT FOR ACTUAL GREEK
ScriptTag="grek"

Sample="KaAnuépa, eime o Apiotopdvng pe Bdtpayor tou" # "Good Morning, said Ar... to his Frogs"
HexCode="0x05d0 0x05d3 0x05d8 0x05dd 0x05e9" # 258/34/32/22/34
# Hebrew Script is used not only for modern and biblical Hebrew, but also for Yiddish, an

# entirely different spoken language (though mostly spoken by Jewish Europeans); to

# illustrate handling alternate languages using the same script, see YIDD below.

# Note that the order of these characters is reversed from that of the Hex Codes: Hebrew is RTL!
# On the screen output, they will be listed left-to-right however. (it's a bash thing)
# This CharMap pattern finds ONLY THE BASIC Hebrew Alphabet (0x05d0-0x05ea) # See other CharMaps

TestChar="w o U 7T &"; # N.B. MUST USE NON-BREAKING SPACES!
# RTL Chars are reversed when $assigned
CharMap="0005:[[:space:]01-9a-f]\{55\}ffff[[:space:]101-9a-f]\{10\}7£f£"
Lang="Hebrew";
Sample="11u p11"; # "Good Morning"

# RTL Words are reversed when $assigned



"LAOO" )

I
"PERS" )

i
"THAI" )

rr

"YIDD" )

LangCode="he' # Hebrew (ISO 639-1)

# Languages spoken in Israel: ar-IL (Arabic) en-IL (English) he (Hebrew) yi (Yiddish)
ScriptTag="hebr"

# Hebr/125: Hebrew Script Unicode blocks: 0x0590-0x05ff; Oxfb00-0xfb4f (Presentation forms)
# 0591-05af (Cantillation Marks); 05b0-05c¢7 (Points and Punctuation));

# 05d0-05ea (Actual alphabet) 05f0-05f4 (Yiddish digraphs g.v. and additional punctuation)

HexCode="0x0Oecae 0x0Oec3 0x0ed5"; # 258/9/9/9/9
TestChar="8 ? &"; # N.B. MUST USE NON-BREAKING SPACES!
CharMap="000e: [[:space:]101-9a-f1\{37\}fef02596[[:space:]]3bffecae[[:space:]]133f£3£f5£f"

# CharMap is '000e:'37x(spaces, 0Os or 1s), then pattern (including required spaces
Lang="Laotian";

LangCode="lo" # Lao (ISO 639-1)

ScriptTag="lao" o # Strictly speaking, this is "lao "
Sample="NAUFTIUANCINWAFTIQI?";

# Laoo/356: Lao Script Unicode block: 0x0e81-0x0eff (sparse block as shown below)

# e81-e82 e84 e87-e88 e8a e8d e94-e97 e99-e9f eal-eal eab5 eal eaa-eab ead-eb9 ebb-ebd eclO-ec4d
# ec6 ec8-ecd ed0-ed9 edc-edd: ede (Khmu Gaw) and edf Khmu Nyaw) exist but are seldom used.

HexCode="0x06af 0x0698 0x0686 0x067e" # 258/18/16/18/18
TestChar="& 5 g " # N.B. MUST USE NON-BREAKING SPACES!

# The following pattern, like that used for Arabic above, looks only for the basic (ISO 8859-6)
# Arabic alphabet (qv), but adds 4 characters that appear only in Persian to narrow the search.
CharMap="0006:[[:space:]01-9a-f]\{11\} [7TE£] [£1\{5\}[ef]"

CharMap=$CharMap" [[:space:]01-9a-£f]\{10\} [4-Tc-£f]" # concatenate Persian-only char 0x067e
CharMap=S$CharMap" [[:space:]01-9a-f1\{9\}[13579bdf]" # concatenate Persian-only char 0x0698
CharMap=$CharMap" [01-9a-£f]1\{4\} [4-Tc-£f]" # concatenate Persian-only char 0x0686
CharMap=$CharMap" [[:space:]01-9a-f]\{6\}[8-£f]" # concatenate Persian-only char 0x06af
Lang="Persian" # aka known informally as Farsi
LangCode="fa" # fa-IR (IR for Iranian Farsi)
ScriptTag="arab" # Uses Arabic script and

Sample="osia,5 cuw ls gL au o mwl ol ge edges ey 4 <ul"™ # "My sampl scrpt is writtn in Persian"
# * Persian has four letters more than the Arabic alphabet: 35, &, -, and X.

# Arab/160: Arabic Script Unicode blocks: 0x0600-; 0x0750-; 0x08a0-; Oxfb50-; Oxfe70-

HexCode="0x0e01l 0x0e09 0x0eld4 0x0e4d42 0x0e55"; # 258/65/62/65/65
TestChar="n a a 1 ¢"; # N.B. MUST USE NON-BREAKING SPACES!
CharMap="000e: [[:space:]]fffffffe[[:space:]]187ffffff[[:space:]]0fffffff"

Lang="Thai";

LangCode="th' # Thai (ISO 639-1)

# Thai/352: Thai Script Unicode block: 0x0e01-0x0e7f

ScriptTag="thai" o

Sample="uWsgsaTatuaafinu v d o a"; # the final 4 check for glyph arrangement
# The # marking the comment is at character position 78, whereas in most other lines it is at

# position 69; this is because the character count of the sample is higher than it appears due

# to the multi-glyph compositions that take place with this particular Thai sequence. Unlike

# Hind