
Bash Script for Evaluating Font Collections against one or more Languages

The script below should run on any contemporary Linux system. Copy the script into a new text file, name it FindFont (or
whatever works for you). Placing it in a location that is already part of your $PATH will make life easier; be sure to set
the execute flag (e.g. using “sudo chmod” or an equivalent command from a file manager GUI). Instructions are found in
the early comments of the code itself as well as in the earlier part of this document.
#!/bin/bash
FindFont - Find all Fonts containing one or more specified characters;
Frank Oberle แฟรงคโ์อเบอลทีททนี้: November 2016
This searches through each .ttf or .otf in some specified directories (see Where2Look below) to
find and list all fonts containing a defined set of characters. Several other attributes of each
"matching" font are listed as well.

PURPOSE: It is often useful to easily determine which fonts have support for one or more scripts and,
how correctly each of those fonts reports its support to an operating system or application.
If, for instance, it is necessary to combine Greek, Thai, and Hindi in a single document, it
would be ideal to locate which fonts support all of these in order to achieve some level of
"harmony." Unfortunately, even though many utilities exist to look within single fonts, I've
found none that would look through several at once. Furthermore, a significant number of fonts
don't correctly report which languages or scripts they provide support for (those mean quite
different things, but that's outside the scope of a shell script comments section). Hence, this
primitive, but useful shell script.
Fonts that don't correctly report thier contents and capabilities are often subject to being
unceremoniously replaced by word processors such as Libre/OpenOffice Writer and others.

ALSO: By default (but can be changed by setting variable values at the beginning), the script will
generate sparate text files: one containing a simple list of all matching fonts that report all
of their capabilities correctly, and another containing a list of fonts that may have structural
problems causing them to report their capabilities incorrectly, incompletely, or not at all.
This latter should be reviewed to determine if these fonts should be repaired or replaced.
This also generates an .fodt file (listing the "matching" fonts) that can be loaded into a word
(optional) processor as the basis for a "font sample" document. Unfortunately, although many available
word processors can open and read .odt files, there are none I'm aware of that will permit all
of the fonts to be displayed correctly, making this a somewhat quixotic effort.
LibreOffice Writer, for instance, "helps" out by making apparently random substitutions of the
fonts when it encounters a "foreign" character set/language or whatever and, even worse, gives
no indication at all that it has done so. Combined with a slavish conformity to the rather odd
and illogical "Complex Text Layout" (CTL) definitions, creating such a "font sample" document
in such a word processor is far more of a bother than it ought to be. Nonetheless, if you have
a "publishing" application, the generated .fodt file may be useful as a starting point.

DEPENDENCIES: The utility ttfdump, installed or available with most Linux distributions and Windows.
The utility fc-query, available for most Linux distributions and many Windows versions
A minimal understanding of the differences among languages, scripts, characters and glyphs;
one reason for this is so that you don't become confused by my blatant disregrd for those
distinctions in order to achieve my immediate goals !!
To add new Script or Language definitions to this script, some knowledge of how to construct
regular expressions is necessary. A pdf document was supplied with this script that explains
the layout of the targets the regular expressions are intended to match.
Finally, the Bash shell, of course. This script should work with any recent version of Linux
and may even work with Microsoft's new bash shell for Windows, since the other utilities
mentioned above are also available for Windows.

USAGE: Right now, this is called as FindFont [1st script/language] [2nd script/language] [3rd ...] etc.
See the convertKeyword() routine below to define what "script/language" means; note that you may
need to add to this "case" statement to suit your own needs. Comments there will (maybe) explain
how. If no parameter is given, this will by default search for fonts containing Thai Unicode
characters; for most users, it probably makes more sense to simply have the script produce usage
instructions in such a case, but I did this for my own selfish purposes so it doesn't. It's easy
enough to change the "if [$# == 0]; then" section in the MAIN SCRIPT DEFINITION ROUTINE below if
you wish to do so.
Currently recognized arguments are these: (case-insensitive, but require a minimum of 4 characters)
Arab[ic], Arme[nian], Bibl[ical (Hebrew)], Cyri[llic], Deva[nagari], Fars[i], Gree[k],
Hebr[ew], Hind[i], Iran[ian], Laot[ian], Pers[ian], Russ[ian], Thai,
Yidd[ish], Box Drawing, Curr[ency], Domi[noes], Frac[tions], Liga[tures], Musi[c]

BUGS: Test Characters and Test Sample Strings in Right-to-Left (RTL) scripts such as Arabic and Hebrew are
handled poorly when assigned to Bash variables. The order of characters in the search list is
reversed, and the order of the words in Sample strings is reversed, although the order of the
characters within the words is maintained. I lost patience attempting to figure out a work-around so
just be aware that it occurs. It really doesn't affect the purpose of this script as I use it.

References:
Evaluating-fonts-for-multilingual-use.pdf # Document explaining this shell script
http://unicode.org/charts/ # View/download official Unicode charts;
look up code points by number, etc.
My own rants:

https://bugs.documentfoundation.org/show_bug.cgi?id=92655 # Relevant pdf attachments on this link:
> "General discussion of Complex Text...
> "Detailed steps to reproduce the bugs.
A very nice additional rant from someone I've never met:
https://eev.ee/blog/2015/05/20/i-stared-into-the-fontconfig-and-the-fontconfig-stared-back-at-me/
look up code points by number, etc.
Pan-Unicode Fonts: These are usually way too large to be of any practical use, but as a benchmark when you
need to see something without worrying about whether the font contains a specific
glyph, having one or two of these available can be helpful.
http://unifoundry.com/unifont.html # Font containing utilitarian (read:
ugly) representations of more Unicode
characters/glyphs than any other font.
www-sul.stanford.edu/depts/sysdept/info/CODE2000.TTF # Code2000, 2001 & 2002: better looking
and almost as comprehensive as Unifont.
#

####### OPENING: Check if ttfdump and fc-query are installed and, if not, exit with an appropriate message.
if ! ttfdumpExists=$(which ttfdump); then # If ttfdump utility is not installed
 echo "The ttfdump utility is required but can't be located." # Display a warning message
 echo "If it's not installed, try running:" # Display a suggestion to the user
 echo " sudo apt install ttfdump"
 echo " (or use whatever package command is appropriate for your distro, e.g. pacman, yum, etc.)"
 echo "Otherwise, check your path."
 exit # End the Script without going further
fi

if ! fcqueryExists=$(which fc-query); then # If fc-query utility is not installed
 echo "The fc-query utility is required but can't be located." # Display a warning message
 echo "The fc-query utility is part of the fontconfig package"
 echo "Try running:" # Display a suggestion to the user
 echo " sudo apt install fontconfig"
 echo " (or use whatever package command is appropriate for your distro, e.g. pacman, yum, etc.)"
 echo "Otherwise, check your path."
 exit # End the Script without going further
fi

#if ! fcqueryExists=$(which Fontaine); then # If the Fontaine app is not installed
echo "The Fontaine application is not installed." # Display an informational message
echo "Fontaine is not required for this script, but can be useful in analyzing font(s) of interest"
echo "without the need to use a full-blown font editor such as FontForge."
echo "If you are willing and able to compile it, the source code can be freely downloaded:"
echo " For information, see http://www.unifont.org/fontaine/ - OR - to download it directly"
echo " go to https://sourceforge.net/projects/fontaine/files/latest/download"
#fi

VARIABLE DECLARATIONS # The basics
 Origin=$(pwd) # Save current directory so we can return
 debug='oFf' # Set to 'ON' to debug certain sections
Where2Look=$(echo ~/.fonts) # Check only User-specific fonts
Where2Look=$(echo /usr/share/fonts/truetype) # Check only for system fonts (all users)
 Where2Look=$(echo ~/.fonts /usr/share/fonts/truetype) # Linux std locations; modify as needed
Where2Look=$(echo ~/Documents/Fonts_All) # My own stash of uninstalled fonts
 Verbosity=1 # How much info to report (1, 2, 3)
 # Currently not implemented
 FODTGen=1 # Generate an .fodt file listing fonts
 # '1' turns it ON; anything else OFF
 FODTDOC="TestDoc" # Created as $Origin/TestDoc.fodt in the
 # directory where script was started
 FPassGen=1 # '1' creates a file listing 'good' fonts
 LLFN="PASS" # LangListFileName name completed below
 SuspectGen=1 # '1' creates listing of 'suspect' fonts
 SFLFN="SuspiciousFonts.txt" # SuspiciousFontListFileName

Not all of these need declaration in BASH, but just in case someone attempts to convert this to a real app
 # Number of Arguments passed to this script on the command line
declare -i CMIdx # Int counter for number of arguments
declare -i NumArgsAccepted # Int counter for upper # of args
 NumArgsAccepted=6 # ARBITRARY; this is all I ever use ...
declare -i ArgsFound # Integer counter: Number of args passed
 ArgsFound=0 # ArgsFound Counter initialized to 0
 # Number of Fonts examined
declare -i FontsChecked # Int counter for # of fonts examined
 FontsChecked=0 # FontsChecked initialized to 0
declare -i FontsMatched # Int counter for # of matching fonts
 FontsMatched=0 # FontsMatched initialized to 0
 # Number of Language Codes examined
declare -i LangIdx # Pointer for Per-Font Language Arrays
declare -a LangAbbrevList # Array of lang codes to be looked for
declare -a LangList # Per-Font Array of found lang Keywords
declare -a LangsMatched # Array of matching langs
declare -i LangMatchFailures # Int counter for # of unmatchedlangs
 LangMatchFailures=0 # LangMatchFailures initialized to 0
declare -i FinalLangCount # Integer value for counting langs found
 # Number of Open Type Capability Matches and Failures
declare -i OTCapIdx # Tracks OT capabilities in each font

declare -a OTFMatches # Array of OTF Capabilty Matches
declare -a OTFMatchFailures # Array of Open Type Tag
declare -i MissingOTFMatches # No of Missing Open Type Capability Tags
 MissingOTFMatches=0 # Initialize Missing OTF Tags to 0
 # Number of Character Map Matches and Failures
declare -a CMapsMatched # Array of OTF Capabilty Matches
declare -i CMMatchSuccesses # No of Character Map Match Successes
declare -i MissingCMMatches # No of Missing Character Map Entries
 MissingCMMatches=0 # MissingCMMatches initialized to 0
declare -i CMapMatchFailures # Int counter for # unmatched charsets
 CMapMatchFailures=0 # CMapMatchFailures initialized to 0

declare -i FullMatchListIdx # Tracks full matches over all fonts
 FullMatchListIdx=0 # Int counter for # full matches
declare -i FullMatchFlag # Tracks full matches over each font
 FullMatchFlag=1 # Assume success until a failure for each
declare -a FullMatchList # List of fonts showing all requirements
 # Cosmetic stuff for screen output
 MajorSeparator=$(printf "=%.0s" {1..128}) # For beginning and end of entire report
 MinorSeparator=$(printf "~%.0s" {1..128}) # For separating each font rpt section
 MiniSeparator=$(printf "~%.0s" {1..106}) # For separating each summary section
 # 36 chars right just; 4 digits right just; open string; line feed
 Fmt="%36s %-4s %s\n" # For use with printf statements below

Bash doesn't preprocess scripts, so functions like writeSample(), convertKeyword(), and inspectFont() must
be defined before they are called ...

writeSample() writes a sample line/section for each font found to contain the specified character(s) to the
fodt output file which will serve as the basis for creating a word processor font sample document.
It assumes that the file has been opened; any other parts of the file are written in line below. This
function is only called in statements controlled by the value of the $FODTGen variable.
writeSample() # Only required for .fodt creation
 {
 echo -e " <text:p >$1</text:p>" >> $DemoDoc # Add this file to our output fodt
 # Note the no-break spaces (0x00a0) after <text:p > below; this is so LibreOffice doesn't discard them !
 echo -e " <text:p > $2</text:p>" >> $DemoDoc # List actual characters to output fodt
 echo -e " <text:p > $3</text:p>" >> $DemoDoc # Add the font Slant, Weight and Width
 echo -e " <text:p > Sample Text:$4</text:p>" >> $DemoDoc # Add sample text to our output fodt
 echo -e " <text:p/>" >> $DemoDoc # Add a blank line after each font name
 } # White space ignored by LO-Writer

convertKeyWord() interprets a processed (uppercase & trimmed) KeyWord to create various required values ...
Here we can define some scripts of interest; in this context the Script name is used as the variable name,
but we could just as easily give the variables Language names if that makes more sense in context.
This is really cheating, since we're only looking for representative character(s) from particular
Script(s) - which can be misleading, as many Greek characters are present for use with Mathematics
even when full Greek language support isn't present. See comment under "CYRL" in the case statement.
CASE Statement: For testing I've used arbitrary 4 letter abbreviations; this could probably be refined to
use ISO 639 two (639-1) or three (639-2) character language codes for convenience, although
we're really looking for a particular Script here rather than a particular Language. For
quick and dirty purposes, this will suffice for now. (Cyrillic, for instance, is not a
Language, but is a Script used by several Languages, each of which may have its own ISO 639
language code.) See "MAIN SCRIPT DEFINITION ROUTINE" below.
HexCode: These are the hex codes in 0x0000 format representing Unicode values of representative sample
characters that we will search for. This will give a somewhat independent view of what Script(s)
each font contains.
TestChar: These are the actual Unicode glyphs assigned to the $HexCode values above: There are no checks to
see that these actually match those glyphs, so be warned!
CharMap: A bitmap is contained in each font where each bit represents one possible position defined by the
Unicode Standard (http://unicode.org/charts/). A "1" bit means the character is present while a
"0" indicates that it isn't. The output from fc-query is arranged in rows of eight (8) thirty-two
bit words arranged in four bytes each. These bytes (0x00-0xff) do not represent values but simply
positions, so are interpreted differently than you might expect. At the start of each row is an
offset value: if, for example, that value is "000e:" then the bits in that row indicate the
presence or absence of Unicode positions 0x0e00 through 0x0eff. Note that if no bits in the range
of a particular offset value are set, that row is simply not included in the output. Typically,
a row defines the presence of assignments from one to three or more Unicode Planes.
$CharMap is a regular expression to determine if appropriate matching lines exist.
Examples of how these are formed are given in comments at the end if I remember to include them.
Lang: This is an entirely arbitrary designator that I use for my own convenience; in some cases it isn't
even a language at all. Neither "Cyrillic" nor "Devanagari" for instance are Languages, but Scripts;
and "Ligatures" and "Box Drawing" certainly aren't Languages either. It's just a mnemonic for me.
LangCode: RFC-3066 is the source for the Lang(uage) Codes used below and by the Linux fc-query utility; for
sample listings and values, see https://www.w3.org/International/articles/language-tags/
For Region & Language Codes, see: http://www.i18nguy.com/unicode/language-identifiers.html
For Language Tags: https://www.microsoft.com/typography/otspec/languagetags.htm
and: https://www.microsoft.com/typography/otfntdev/standot/features.aspx
ScriptTag: Part of "capability:" section as reported for a fonts when using fc-query
ISO 15924: 4 char Alpha Script Codes: http://www.unicode.org/iso15924/iso15924-codes.html
I am using: otlayout:arab otlayout:cyrl otlayout:dev2 otlayout:deva otlayout:grek
otlayout:hebr otlayout:musc otlayout:thai (Only the last four letters!)
ISO 15924: 3 digit Script Codes: http://www.unicode.org/iso15924/iso15924-num.html
See a list at: https://www.microsoft.com/typography/otspec/scripttags.htm
Because the definitions of OFF/OT script tags predate ISO 15924 and Unicode Script property
assignments, the script tags provided by the fonts don't always conform to ISO 15924. The

resolution of conflicting proposals also resulted in alternate tags that essentially refer to
the same Unicode script definitions: for example, ‘deva’ and ‘dev2’ are virtually the same.
Script Tags supposedly indicate the font's ability to properly arrange characters that are
formed from more than one glyph*: a Thai character that needs to have both a vowel and a tone
mark above it; such placement needs to be altered if only one of those is required. It is very
important to remember that that - even if the font reports this ability for a certain script,
it doesn't imply that it does this rearrangment very well - but that's another issue.
* including: composition, decomposition, substitution, smallcaps, alternates, ligatures, et al.
Sample: A sample word or phrase in characters of the Script/Language we are examing; this is used to
demonstrate certain capabilities if applicable; otherwise it's just that: a sample of the script.

ISO 15295, which gives both 4 letter and numeric codes, is certainly more appropriate for this utility,
but the likelihood of a typical user knowing these is rather low, so I didn't attempt to do that.
To make things more interesting, many Unicode planes contain glyphs that are not really part of any
spoken language; there are no ISO 15295 script codes for Box Drawing characters, Emoji, Musical Symbols
and similar. So modify this listing to suit whatever identities you wish; just remember to also modify
the Keyword input translation sequences in the next section to suit what you are using.
convertKeyWord()
 {
 case "$1" in # Evaluate 1st (only) arg passed in ...
 "ARAB") HexCode="0x0639 0x0633 0x0626" # Only chars from basic alphabet
 TestChar=" ع س ئ " # N.B. MUST USE NON-BREAKING SPACES!
 # The following pattern looks only for the basic (ISO 8859-6) Arabic alphabet which, although
 # insufficient for "real-world" use, is all that's needed for the purposes of this script.
 CharMap="0006:[[:space:]01-9a-f]\{11\}[7f][f]\{5\}[ef]" # 258/32/15/32/32
 Lang="Arabic"
 LangCode="ar" # Arabic (ISO 639-1)
 # fc-match uses only 'ar': The following are regional language versions:
 # ar-LB ar-LY ar-MA ar-MR ar-OM ar-PS ar-QA ar-SA ar-SD ar-SO ar-SY ar-TD ar-TN ar-YE
 # ar-AE ar-BH ar-DZ ar-EG ar-IL ar-IN ar-IQ ar-JO ar-KW
 ScriptTag="arab"
 Sample="هو مكتوب لي النصي عينة في العربية" # "My sample script is written in Arabic"
 # RTL Words are reversed when $assigned
 # What that means essentially is that on a terminal output, the RTL Words, although having their
 # letters arranged correctly from right to left, are themselves written left to right. In the
 # fodt file, however, they are shown correctly. I attempted to "fix" this in a number of ways,
 # e.g. by wrapping the Arabic between RLE (0x202b) or RLO (0x202e) and PDF (0x202c) codes (see
 # http://www.unicode.org/reports/tr9/) but gave up trying, since it really didn't affect the
 # purpose for which this script was intended. See comments in other Right-to-Left Scripts.
 # Arab/160: Arabic Script Unicode blocks: 0x0600-; 0x0750-; 0x08a0-; 0xfb50-; 0xfe70-
 ;;
 "ARME") HexCode="0x0580 0x0583 0x0587" # 258/31/31/16/30
 TestChar="ր փ և" # N.B. MUST USE NON-BREAKING SPACES!
 CharMap="0005:[[:space:]01-9a-f]\{10\}fffe[[:space:]01-9a-f]\{5\}fe7[[:space:]f]\{13\}e"
 # Interestingly, of the 31 fonts on my system that contain the test characters ($TestChar above)
 # as well as the language code "hy" ($LangCode below) all but 1 match this pattern. The one that
 # doesn't match is DejaVuSans-ExtraLight.ttf, which is missing the 0x0559 character ("Armenian
 # modifier letter left half ring" to use the Unicode term), making the "fe7" portion of the
 # CharMap pattern "fc7" instead. All 21 of the other DejaVu fonts on my system have this glyph
 # but I haven't pursued why that might be, since I don't use Armenian. I've included Armenian
 # only because it shares an fc-query output row (0005:) with Hebrew, and Hebrew is one of the
 # examples in my pdf "Evaluating Fonts for use in Multi-Lingual Documents" which explains how
 # to interpret/filter these lines using grep.
 Lang="Armenian"
 LangCode="hy" # Really! I don't know the origin of "hy"
 ScriptTag="armn"
 Sample="Ինչ եք խոսում են հայերեն:" # "Do you speak Armenian?"
 # Armenian Script Unicode block: 0x0530-0x058f; Armenian Ligatures are 0xfb13-0xfb17
 ;;
 "BIBL") HexCode="0x05d0 0x05d3 0x05d8 0x05dd 0x05e9 0x05a3 0x05b3" # 258/6/4/6/6
 # This finds fonts with the Hebrew Alphabet AND Cantillation Marks 0x0591-0x05af (טעמי המקרא)
 # $TestChar does not include the cantillation marks referenced in $HexCode above because they
 # are very difficult to see without being "attached" to a "supporting" character. If such a
 # character is used (as in $Sample below), it confuses bash anyway as each is really two
 # characters. That's why the mismatch (7 hex codes and only 5 test characters)
 # Since the script only actually looks at the hex codes, this really makes no difference.
 TestChar=" ש ם ט ד א "; # N.B. MUST USE NON-BREAKING SPACES!
 # RTL Chars are reversed when $assigned
 CharMap="0005:[[:space:]01-9a-f]\{37\}fffe[[:space:]01-9a-f]\{5\}ffff" # Cosmetic concatenation
 CharMap=$CharMap"[[:space:]01-9a-f]\{14\}00[[01]\{1\}[[078f]\{1\}07ff" # for printing source
 # Regarding the [078f] portion of the pattern above: in addition to the alphabet, a value of:
 # : 7 (0 1 1 1) means only Yiddish Digraphs (0x5f0-0x5f2) are present, no add'l punctuation
 # : 8 (1 0 0 0) means only additional punctuation (0x5f3-0x5f4) is present
 # : 0 (0 0 0 0) means neither of the above is present
 # : f (1 1 1 1) means both Yiddish Digraphs as well as additional punctuation is present.
 Lang="Hebrew";
 # From the Jewish 'Shema Yisrael' 'אֶחָֽד' Prayer: "May his name be blessed forever and ever."
 # Sample="מי ייתן שם להתברך לנצח נצחים שלו." # With no markings
 Sample="בוָרווךְ ששֵׁם כוְבווד מַלְכוותוו לְעוולָם וָעֶד." # RTL Words are reversed when $assigned
 # Note: If the words are reversed here, they appear in the proper order on the screen and in
 # the .fodt file, but the characters within each word are in reverse order. Because some
 # characters are altered due to their display order, things can get really bizzare. Sigh!
 LangCode='he' # Hebrew (ISO 639-1)
 LangCode='he' # Hebrew (ISO 639-1)
 # Languages spoken in Israel: ar-IL (Arabic) en-IL (English) he (Hebrew) yi (Yiddish)

 ScriptTag="hebr"
 # Hebr/125: Hebrew Script Unicode blocks: 0x0590-0x05ff; 0xfb00-0xfb4f (Presentation forms)
 # 0591-05af (Cantillation Marks); 05b0-05c7 (Points and Punctuation));
 # 05d0-05ea (Actual alphabet) 05f0-05f4 (Yiddish digraphs q.v. and additional punctuation)
 ;;
 "CYRI") HexCode="0x0411 0x0414 0x042f 0x0496" # 258/83/83/64/83
 # Here, this essentially means "Russian" (which points to this case anyway); see note.
 TestChar="Б Д Я Җ" # N.B. MUST USE NON-BREAKING SPACES!
 CharMap="0004:[[:space:]]ffff[[:space:]01-9a-f]\{5\}ffffffff[[:space:]01-9a-f]\{5\}ffff"
 # Note: Here I'm only looking for the basic Russian alphabetic characters. The "anything{5}"
 # gaps eliminate checking for some Cyrillic extensions in the ranges from 0x0400-0x040f
 # and 0x0450-0x045f (and, of course, beyond); if you care about these $CharMap will
 # need to be modified accordingly.
 Lang="Cyrillic"
 LangCode='ru' # Russian (ISO 639-1)
 # Note that "Cyrillic" is a script, not a language; here I am treating it as if it refers to
 # the Russian language; for my own use, that makes things easier, but beware!!!
 # Other languages that use Cyrillic script:
 # az-Cyrl (Azerbaijani), ru-RU (Russian), sr-Cyrl (Serbian), uz-Cyrl (Uzbek)
 # Note that Serbian, for example, uses different glyphs for some of its characters - one reason
 # this routine is not meant for "production" use.
 ScriptTag="cyrl"
 Sample="Доброе утро" # "Good Morning"
 # Cyrillic Script Unicode block: 0x0400-0x04ff
 ;;
 "DEVA") HexCode="0x0919 0x0921 0x0935"; # 258/4/4/4/4
 # Here, this essentially means "Hindi" (which points to this case anyway); see note.
 TestChar="ङ ड व" # N.B. MUST USE NON-BREAKING SPACES!
 CharMap="0009:[[:space:]01-9a-f]\{8\}"
 # Note:
 Lang="Devanagari"
 LangCode='hi' # Hindi (ISO 639-1)
 # See the first note in the "CYRL" case; this is for my own convenience.
 # SOME other (of >120) languages that use Devanagari script:
 # kok (Konkani), mr (Marathi), ne (Nepali), pi (Pali), sd-IN (Sindhi) and, of course,
 # sa (classical Sanskrit)
 ScriptTag="deva"
 Sample=" मेरे नमूना सससस रपट सहंदी मे सलखा है" # "My sample script (is) written in Hindi"
 # The Sample text is displayed correctly in the fodt output, but letters are not joined together
 # properly on the terminal display.
 # The # marking the comment is at character position 83, whereas in most other lines it is at
 # position 69; this is because the character count of the sample is higher than it appears due
 # to the glyph composition that takes place with this particular Hindi sequence.
 # Bash decomposes this into individual glyphs on my terminal screen, but the output is rendered
 # correctly on the .fodt output, or when copied 'as is' from the terminal to LibreOffice Writer
 # and other applications. I originally thought that was because none of the mono-spaced terminal
 # fonts on my system report support for ISO 15924 script 'deva' or for the ISO 639-1 language
 # code 'hi' (which none of them do). I later became convinced it may be because of the terminal
 # itself; if I set the terminal profile to use FreeSerif (a proportional spaced font that does
 # report the 15924 and 639-1 codes correctly, the decomposition persists. It is also evident
 # that the terminal in this case forces the variable width glyphs of FreeSerif into mono-spaced
 # cells (and looks awful in the process as would be expected). Compare this to Thai below.
 # Deva/317: Devanagari Script: Unicode blocks: 0x0900-0x097f; Extended block is 0xa8e0-0xa8ff
 ;;
 "GREE") HexCode="0x1f00 0x1f01 0x1f0f 0x1fa0 0x1fa1 0x1faf" # # 258/66/66/58/66
 TestChar="ἀ ἁ Ἇ ᾠ ᾡ ᾯ" # N.B. MUST USE NON-BREAKING SPACES!
 # All of the letters in the standard Greek Alphabet - even many that are identical to Latin
 # characters, e.g. B, H, K, O, P, and Y - are used in Mathematics, so simply looking for
 # a selection of Greek alphabetic characters won't really indicate support for the Greek
 # language. When looking at my own font collection I found 66 fonts that contained all of
 # the needed composite characters. All of them did contain the 'el' language code, but only
 # 58 of them had the 'grek' Script Tag. Hence, the use of Greek composite characters here.
 # The $CharMap below doesn't test for ALL extended Greek characters, but is sufficient...
 CharMap="001f:[[:space:]]3f3ffff[[:space:]01-9a-f]\{30\}ffff" # incl: 1f00-1f15 and 1fa0-1fb3
 Lang="Greek"
 LangCode='el' # Greek (`Ellenic) (ISO 639-1)
 # fc-match uses only 'el', but there are el-CY (Cyprus) and el-GR (Greece) codes as well.
 # Grek/200: Greek Script Unicode block: 0x0370-0x03ff
 # Greek Extended Unicode block: 0x1f00-0x1fff # MORE IMPORTANT FOR ACTUAL GREEK
 ScriptTag="grek"
 Sample="Καλημέρα, είπε ο Αριστοφάνης με Βάτραχοι του" # "Good Morning, said Ar... to his Frogs"
 ;;
 "HEBR") HexCode="0x05d0 0x05d3 0x05d8 0x05dd 0x05e9" # 258/34/32/22/34
 # Hebrew Script is used not only for modern and biblical Hebrew, but also for Yiddish, an
 # entirely different spoken language (though mostly spoken by Jewish Europeans); to
 # illustrate handling alternate languages using the same script, see YIDD below.
 # Note that the order of these characters is reversed from that of the Hex Codes: Hebrew is RTL!
 # On the screen output, they will be listed left-to-right however. (it's a bash thing)
 # This CharMap pattern finds ONLY THE BASIC Hebrew Alphabet (0x05d0-0x05ea) # See other CharMaps
 TestChar=" ש ם ט ד א "; # N.B. MUST USE NON-BREAKING SPACES!
 # RTL Chars are reversed when $assigned
 CharMap="0005:[[:space:]01-9a-f]\{55\}ffff[[:space:]01-9a-f]\{10\}7ff"
 Lang="Hebrew";
 Sample="בוקר טוב"; # "Good Morning"
 # RTL Words are reversed when $assigned

 LangCode='he' # Hebrew (ISO 639-1)
 # Languages spoken in Israel: ar-IL (Arabic) en-IL (English) he (Hebrew) yi (Yiddish)
 ScriptTag="hebr"
 # Hebr/125: Hebrew Script Unicode blocks: 0x0590-0x05ff; 0xfb00-0xfb4f (Presentation forms)
 # 0591-05af (Cantillation Marks); 05b0-05c7 (Points and Punctuation));
 # 05d0-05ea (Actual alphabet) 05f0-05f4 (Yiddish digraphs q.v. and additional punctuation)
 ;;
 "LAOO") HexCode="0x0eae 0x0ec3 0x0ed5"; # 258/9/9/9/9
 TestChar="ຮ ໃ ໕"; # N.B. MUST USE NON-BREAKING SPACES!
 CharMap="000e:[[:space:]01-9a-f]\{37\}fef02596[[:space:]]3bffecae[[:space:]]33ff3f5f"
 # CharMap is '000e:'37x(spaces, 0s or 1s), then pattern (including required spaces
 Lang="Laotian";
 LangCode='lo' # Lao (ISO 639-1)
 ScriptTag="lao" # Strictly speaking, this is "lao "
 Sample="ທ່ານສາມາດເວົ້າພາສາລາວ?";
 # Laoo/356: Lao Script Unicode block: 0x0e81-0x0eff (sparse block as shown below)
 # e81-e82 e84 e87-e88 e8a e8d e94-e97 e99-e9f ea1-ea3 ea5 ea7 eaa-eab ead-eb9 ebb-ebd ec0-ec4
 # ec6 ec8-ecd ed0-ed9 edc-edd: ede (Khmu Gaw) and edf Khmu Nyaw) exist but are seldom used.
 ;;
 "PERS") HexCode="0x06af 0x0698 0x0686 0x067e" # 258/18/16/18/18
 TestChar=" گ ژ چ پ " # N.B. MUST USE NON-BREAKING SPACES!
 # The following pattern, like that used for Arabic above, looks only for the basic (ISO 8859-6)
 # Arabic alphabet (qv), but adds 4 characters that appear only in Persian to narrow the search.
 CharMap="0006:[[:space:]01-9a-f]\{11\}[7f][f]\{5\}[ef]"
 CharMap=$CharMap"[[:space:]01-9a-f]\{10\}[4-7c-f]" # concatenate Persian-only char 0x067e
 CharMap=$CharMap"[[:space:]01-9a-f]\{9\}[13579bdf]" # concatenate Persian-only char 0x0698
 CharMap=$CharMap"[01-9a-f]\{4\}[4-7c-f]" # concatenate Persian-only char 0x0686
 CharMap=$CharMap"[[:space:]01-9a-f]\{6\}[8-f]" # concatenate Persian-only char 0x06af
 Lang="Persian" # aka known informally as Farsi
 LangCode="fa" # fa-IR (IR for Iranian Farsi)
 ScriptTag="arab" # Uses Arabic script and
 Sample="اسکریپت نمونه من این است که به زبان فارسی نوشته" # "My sampl scrpt is writtn in Persian"
 # * Persian has four letters more than the Arabic alphabet: پ ,چ ,ژ, and گ.
 # Arab/160: Arabic Script Unicode blocks: 0x0600-; 0x0750-; 0x08a0-; 0xfb50-; 0xfe70-
 ;;
 "THAI") HexCode="0x0e01 0x0e09 0x0e14 0x0e42 0x0e55"; # 258/65/62/65/65
 TestChar="ก ฉ ด โ ๕"; # N.B. MUST USE NON-BREAKING SPACES!
 CharMap="000e:[[:space:]]fffffffe[[:space:]]87ffffff[[:space:]]0fffffff"
 Lang="Thai";
 LangCode='th' # Thai (ISO 639-1)
 # Thai/352: Thai Script Unicode block: 0x0e01-0x0e7f
 ScriptTag="thai"
 Sample=" แฟรงคโ์อเบอลทีททนี้บิ่ปิ่ญ ญ"ู; # the final 4 check for glyph arrangement
 # The # marking the comment is at character position 78, whereas in most other lines it is at
 # position 69; this is because the character count of the sample is higher than it appears due
 # to the multi-glyph compositions that take place with this particular Thai sequence. Unlike
 # Hindi however (see above), this sample displays correctly on the terminal (as well as on the
 # various outputs) because all of the Thai vowels and tone marks used are "dead keys."
 ;;
 "YIDD") HexCode="0x05d0 0x05d3 0x05d8 0x05f0 0x05f1" # 258/34/32/22/34
 TestChar=" ױ װ ט ד א "; # N.B. MUST USE NON-BREAKING SPACES!
 # Substituted 2 Yidish-only digraphs in the hex codes, but these are not displayed here.
 # The Yiddish Language is spoken in Israel and various European countries. For its alphabet
 # it uses Hebrew Script, but with the addition of specific Yiddish Digraphs (0x05f0-0x05f2).
 # Digraphs are two glyphs which remain separate glyphs, but are placed very close together.
 # Note that the order of these characters is reversed from that of the Hex: Yiddish is also RTL!
 # On the screen output, they will be listed left-to-right however (it's a bash thing)
 CharMap="0005:[[:space:]01-9a-f]\{55\}ffff[[:space:]01-9a-f]\{10\}7ff" # 32/34/258
 # Regarding the [078f] portion of the pattern above: in addition to the alphabet, a value of:
 # : 7 (0 1 1 1) means only Yiddish Digraphs (0x5f0-0x5f2) are present, no add'l punctuation
 # : 8 (1 0 0 0) means only additional punctuation (0x5f3-0x5f4) is present
 # : 0 (0 0 0 0) means neither of the above is present
 # : f (1 1 1 1) means both Yiddish Digraphs as well as additional punctuation is present.
 Lang="Yiddish";
 # Yiddish "looks like Hebrew but doesn't sound like Hebrew" (Translation of $Sample below).
 Sample="קוקט ווי העברעיש אָבער טוט נישט געזונט ווי העברעיש"
 LangCode='yi' # Yiddish (ISO 639-1)
 ScriptTag="hebr"
 # Hebr/125: Hebrew Script Unicode blocks: 0x0590-0x05ff; 0xfb00-0xfb4f (Presentation forms)
 # 05d0-05ea (Actual alphabet) 05f0-05f4 (Yiddish digraphs and additional punctuation)
 ;;
 # The Keywords below don't represent any "official" category, but are merely things I've looked for:
 "BOXD") HexCode="0x250c 0x2500 0x2518" # 258/94/_/_/91
 TestChar="┌ ─ ┘" # N.B. MUST USE NON-BREAKING SPACES!
 CharMap="0025:[[:space:]01-9a-f]\{8\}" # TO DO: Incomplete: NEEDS FIXING
 Lang="Box Drawing" # Non-standard name for output here
 LangCode='99' # Language not relevant
 Sample="╔═╤═╗ ┌──┘";
 # Box Drawing Script Unicode block: 0x2500–0x257F
 ;;
 "CURR") HexCode="0x20ac 0x20ad 0x20b9 0x20aa 0x20a9" # 258/42/_/_/42
 # The currncy symbols in the lines above and below are: Euro, Kip, Rupee, Shekel, Yen, Won
 TestChar="€ ₭ ₹ ₪ ₩"; # N.B. £ (0xa3) and ¥ (0xa5) are "Latin"
 # Currency Plane occupies right half of word 5 and left half of word 6 in the 0020: row
 CharMap="0020:[[:space:]01-9a-f]\{50\}[[:space:]01-9a-f]\{9\}" # Could permit all 0s: FIX THIS!

 # "0020: ffffffff fffffcff ffffffff fff3001f 001f7fff 03ffffff ffff0000 0001ffff"
 # echo ${CMap:46:9} pulls out relevant part: 7fff 03ff
 # These characters cannot ALL be 0 !! # But this will do for the moment
 Lang="Currency"; # Non-standard name for output here
 LangCode='99' # Used universally; language not relevant
 Sample="\$5 = ₩5,682.98 = €4.59 = ₪19.31 = 158,435ریال etc."; # Note: "$" must be escaped in bash!
 # Currency Symbols Unicode block: 20a0–20cf; also in a variety of other scripts
 # http://www.xe.com/symbols.php and https://gist.github.com/bzerangue/5484121 shows collections.
 # 0x20a1 (₡ Costa Rica Colon), 0x20ac (€ {various} Euro), 0x00a3 (£ {various} Pound),
 # 0xfdfc (ریال Iranian Real), 0x20aa (₪ Israeli Shekel), 0x00a5 (¥ Japanese Yen),
 # 0x20a9 (₩ Korean Won), 0x20ad (₭ Laotian Kip), 0x20b1 (₱ Philippine Peso),
 # 0x0e3f (฿ Thai Baht), 0x20b9 (₹ Indian Rupee - also see devanagari letter U+0930)
 ;;
 "DOMI") HexCode="0x1f053"; # Merely an example of Unicode values
 TestChar= "; # higher than 0xffff; see "MUSI" below"�
 CharMap="01f0:[[:space:]01-9a-f]\{8\}" # for comments about that range. 258/0
 Lang="Dominoes"; # Non-standard name for output here
 LangCode='99' # Language not relevant
 Sample= "; # Only used for fodt generation"���
 # Domino Tiles Unicode block: 0x1f030–0x1f09f; 1f030-1f093 are used
 ;;
 "FRAC") HexCode="0x00bc 0x00bd 0x00be" # 258/215/_/_/215
 TestChar="¼ ½ ¾" # N.B. MUST USE NON-BREAKING SPACES!
 CharMap="0000:[[:space:]01-9a-f]\{46\}[01-9a-f]" # ANY, not all of the above 3 fractions
 Lang="Ligatures"; # Non-standard name for output here
 LangCode='99' # Language not relevant
 Sample="One-quarter is ¼; one half is ½; three-quarters is ¾."
 ;;
 "LIGA") HexCode="0xfb00 0xfb01 0xfb02 0xfb03 0xfb04 0xfb05 0xfb06" # 258/20/_/_/20
 # Characters above and below are cherry-picked from the 0xfb00–0xfb4f Block
 TestChar="ff fi fl ffi ffl st " # N.B. MUST USE NON-BREAKING SPACES!st
 CharMap="00fb:[[:space:]01-9a-f]\{7\}7f" # 20/258 # 0xfb00–0xfb4f Block
 # ALTERNATE GROUPINGS OF LIGATURES for when you just need to feel depressed ...
 # HexCode="0x0c6" # 258/3/_/_/3
 # TestChar="Æ"; # N.B. MUST USE NON-BREAKING SPACES!
 # CharMap="0000:" # [[:space:]01-9a-f]\{7\}" # 7f" # 0/3/258
 # HexCode="0x0e6" # 258/10/_/_/10
 # TestChar="æ"; # N.B. MUST USE NON-BREAKING SPACES!
 # CharMap="0000:" # [[:space:]01-9a-f]\{7\}" # 7f" # 2/10/258
 # HexCode="0x152 0x153" # 258/9/_/_/9
 # TestChar="Œ œ"; # N.B. MUST USE NON-BREAKING SPACES!
 # CharMap="0015:" # [[:space:]01-9a-f]\{7\}" # 7f" # 9/258
 Lang="Ligatures"; # Non-standard name for output here
 LangCode='99' # Language not relevant
 Sample="effective or effective: efficiency or efficiency: upendous or stupendous";st
 # Alphabetic Presentation Forms Unicode block: 0xfb00–0xfb4f
 # See: https://en.wikipedia.org/wiki/List_of_precomposed_Latin_characters_in_Unicode
 # C1 Controls and Latin-1 Supplement Unicode block: 0080–00ff! Not recommended by Unicode but...
 # Latin Ligatures, like a few other natural groupings, are scattered all over the place, so:
 # TO DO: CAN MULTIPLE HEX CODE GROUPS (0080 & fb00) BE SENT BELOW? NEED TO CHECK WHAT I DID...
 ;;
 "MUSI") # HexCode="0x1d106 1d10b 0x1d120 0x1d160"; # REPLACED: See next assignment line.
 # TestChar=" "� � � " �
 # The "official"* Musical Symbols Unicode block is nominally 0x1d100-1d1ff, with the segments
 # 1d100-1d126, 1d129-1d158, 1d15a-1d172, and 1d17b-1d1e8 being the actual characters
 # * The "official" version was introduced in version 3.1 of Unicode (March 2001)
 # These characters are all present in both .ttf and .otf versions of FreeMono for example but,
 # as with other scripts that begin beyond 0xffff, they are not reported by ttfdump or any
 # other font utility I've been able to locate.
 # MuseScore, for example, uses their own MScore font, which has glyphs in a private use segment
 # (e.g. 0xe19b) but that's not generally usable due to the proprietary encoding.
 # Therefore: use the limited set of Musical Symbols located in the Unicode Miscellaneous Symbols
 # block that runs from 0x2600-0x26ff; the following are the applicable symbols for music.
 HexCode="0x2669 0x266a 0x266b 0x266c 0x266d 0x266e 0x266f" # 258/34/_/1/34
 # ♩ 2669 quarter note ♪ 266A eighth note ♫ 266B beamed eighth notes
 # ♬ 266C beamed sixteenth notes ♭ 266D music flat sign ♮ 266E music natural sign
 # ♯ 266F music sharp sign
 TestChar="♩ ♪ ♫ ♬ ♭ ♮ ♯"; # TestChar=" "� � � "; # TestChar="� ";
 CharMap="0026:[[:space:]01-9a-f]\{8\}" # Was: ="01d1:[[:space:]01-9a-f]\{8\}"
 Lang="Music"; # Non-standard name for output here
 LangCode='99' # Language not relevant
 ScriptTag="musc"
 Sample= " # Only used for fodt generation" "� � � � � � �
 ;;
 *) HexCode="0x0041 0x0042 0x0079 0x007a";
 TestChar="A B y z"; # N.B. MUST USE NON-BREAKING SPACES!
 CharMap="0000:[[:space:]01-9a-f]\{8\}"
 Lang="English";
 LangCode='en' # English (ISO 639-1)
 Sample="Good Morning";
 # C0 controls and Basic Latin Unicode block: 0x0000-0x007f (formerly called lower ASCII)
 ;;
 esac
 # Note that all variable definitions are GLOBAL (the default in Bash), so any caller has easy access.
 }

MAIN SCRIPT DEFINITION ROUTINE: Interprets parameters passed to this shell script, and calls the
convertKeyWord() function to grab several values for each Script/Language we are interested in looking at.
Here we define the particular scripts we are interested in; one to $NumArgsAccepted may be specified as
command line parameters, but if none are given explicitly, we'll look for fonts containing Thai characters.
echo $MajorSeparator
if [$# == 0]; then # If TRUE could just show usage and exit
 # The default to Thai is for my own convenience; as currently written, up to $NumArgsAccepted parameters
 # can be given from the following supported (and case-insensitive) entries:
 # Arab[ic], Arme[nian], Bibl[ical (Hebrew)], Cyri[llic], Deva[nagari], Fars[i], Gree[k],
 # Hebr[ew], Hind[i], Iran[ian], Laot[ian], Pers[ian], Russ[ian], Thai,
 # Yidd[ish], Box Drawing, Curr[ency], Domi[noes], Frac[tions], Liga[tures], Musi[c]
 # Otherwise, for any unrecognized keyword, this will search for fonts containing Latin characters
 echo "INFO: No command line parameters given; we're looking for Thai characters by default"
 Keyword="THAI"
 convertKeyWord $Keyword # Grab specific values for this language
 TestCodeList=$HexCode; LangCodeList=$LangCode; CMapList=$CharMap
 SampleText=$Sample # This reverses word order in RTL phrases
 Message=$TestChar' ('$HexCode')'
 CharMsg="'"$TestChar"'"
 LangList[1]=$Keyword
 LangAbbrevList[1]=$LangCode
 OTFCapList=$ScriptTag
else
 for arg in `seq 1 $NumArgsAccepted`; do # Wander through each argument passed in
 if [${!arg}]; then # If any "arg"th argument was passed
 Keyword=$(echo ${!arg} |cut -c1-4 |tr '[:lower:]' '[:upper:]') # Create 4 char upper case keyword
 # Unicode planes contain SCRIPTS, although any Script may be used by multiple languages.
 # These "translations" convert languages I commonly refer to into the Scripts they use.
 # This is NOT scalable, as some languages can be written in more than one script!
 # For example: Azerbaijani, Japanese, Kyrgyzstani, Moldovan, Mongolian, and Turkmenistani: Beware!
 # Inuktitut can be written in its own syllabary, a modified Cherokee alphabet or with Latin letters.
 if [$Keyword == "HIND"]; then Keyword="DEVA"; fi # Convert Language to required Script
 if [$Keyword == "RUSS"]; then Keyword="CYRI"; fi # Convert Language to required Script
 if [$Keyword == "FARS"]; then Keyword="PERS"; fi # Make Farsi an alias for Persian
 if [$Keyword == "IRAN"]; then Keyword="PERS"; fi # Make Iranian an alias for Persian
 if [$Keyword == "LAOT"]; then Keyword="LAOO"; fi # Compensate for odd abbreviation
 convertKeyWord $Keyword # Create variables for this argument
 TestCodeList=$TestCodeList" "$HexCode; LangCodeList=$LangCodeList" "$LangCode # Expand lists
 CMapList=$CMapList" "$CharMap; SampleText=$SampleText" "$Sample # Expand lists
 ((ArgsFound++))
 if [$ArgsFound == $#] && [$# != 1]; then #
 Message=$Message' and '$TestChar' ('$HexCode')' # Need "and" for last entry but not first
 CharMsg=$CharMsg' and '"'"$TestChar"'"
 else
 Message=$Message' '$TestChar' ('$HexCode')' # Otherwise just separate with spaces
 CharMsg=$CharMsg' '"'"$TestChar"'"
 fi
 # In either case above, $Message has the embedded RTL Characters from $TestChar in a reversed order
 # I suspect this is a side effect of font rendering mechanisms interpreting spaces as "Latin"
 LangList[arg]=$Keyword
 LangAbbrevList[arg]=$LangCode
 OTFCapList=$OTFCapList" "$ScriptTag
 fi
 done # Done: for arg in `seq 1 $NumArgsAcce...
fi # Done: if [$# == 0]

OPEN AN .fodt FILE (if the FODTGen flag is set) and create the initial part of the header
Now we prepare to create a demonstration document that can be loaded into LibreOffice Writer or other
application that can read .fodt files (bare xml versions of .odt files). We need to establish a full
path name for the file, because we will be in different directories as we write to it, which can get ugly.
TO DO: Include Font style information when creating the .fodt output ::: gave up; not recognized by LO
if [$FODTGen == 1]; then
 DemoDoc=$Origin"/"$FODTDOC".fodt"
 # Experimental stuff: See /mnt/Library/Ubuntu/Unity_Screen_Elements.fodt for things to rip off...
 echo '<?xml version="1.0" encoding="UTF-8"?>' > $DemoDoc # CREATE NEW FILE; then append below
 echo '' >> $DemoDoc
 echo '<office:document' >> $DemoDoc
 echo ' xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0"' >> $DemoDoc
 echo ' xmlns:style="urn:oasis:names:tc:opendocument:xmlns:style:1.0"' >> $DemoDoc
 echo ' xmlns:text="urn:oasis:names:tc:opendocument:xmlns:text:1.0"' >> $DemoDoc
 echo ' xmlns:table="urn:oasis:names:tc:opendocument:xmlns:table:1.0"' >> $DemoDoc
 echo ' xmlns:fo="urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0"' >> $DemoDoc
 echo ' xmlns:meta="urn:oasis:names:tc:opendocument:xmlns:meta:1.0"' >> $DemoDoc
 echo ' xmlns:number="urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0"' >> $DemoDoc
 echo ' xmlns:script="urn:oasis:names:tc:opendocument:xmlns:script:1.0"' >> $DemoDoc
 echo ' xmlns:loext="urn:org:documentfoundation:names:experimental:office:xmlns:loext:1.0"' >> $DemoDoc
 echo ' xmlns:field="urn:openoffice:names:experimental:ooo-ms-interop:xmlns:field:1.0"' >> $DemoDoc
 echo ' xmlns:formx="urn:openoffice:names:experimental:ooxml-odf-interop:xmlns:form:1.0"' >> $DemoDoc
 echo ' xmlns:css3t="http://www.w3.org/TR/css3-text/"' >> $DemoDoc
 echo ' office:version="1.2"' >> $DemoDoc
 echo ' office:mimetype="application/vnd.oasis.opendocument.text">' >> $DemoDoc
 echo ' <office:styles>' >> $DemoDoc
 echo ' </office:styles>' >> $DemoDoc
 echo ' <office:body>' >> $DemoDoc

 echo ' <office:text>' >> $DemoDoc
 echo ' <text:p >Font Samples for selected fonts:</text:p>' >> $DemoDoc
 echo ' <text:p >This file is '$DemoDoc'</text:p>' >> $DemoDoc
 echo ' <text:p/>' >> $DemoDoc
 echo ' <text:p >Thai Script Sample: นี้ถกูเขยีนโดยแฟรงคโ์อเบอล<ี/text:p>' >> $DemoDoc
 echo ' <text:p >Devanagari Script Sample: यह अंगसरेजी भाषा नहीं है (Hindi Language)</text:p>' >> $DemoDoc
 echo ' <text:p >Hebrew Script Sample: זו השפה העברית; N.B. Hebrew is right to left</text:p>' >> $DemoDoc
 echo ' <text:p/>' >> $DemoDoc
 echo ' <text:p/>' >> $DemoDoc
 # $Message below looks strange in the .fodt file if it contains an RTL character
 # but it is read and displayed correctly by LibreOffice Writer
 echo ' <text:p >The following is a list of fonts in the directories:</text:p>' >> $DemoDoc
 echo ' <text:p > '$Where2Look'</text:p>' >> $DemoDoc
 echo ' <text:p >that contain the character(s) '$Message'</text:p>' >> $DemoDoc
 echo ' <text:p/>' >> $DemoDoc
fi # Done (momentarily): if [$FODTGen ==...

Generate a list of 'suspicious' fonts, i.e. those that may require replacement
if [$SuspectGen == 1]; then # Switch set at beginning of this script
 SFLFN=$Origin"/"$SFLFN
 printf "This file is: $SFLFN\n" > $SFLFN
 printf "This lists Font Files that may need repair or replacement due possible errors.\n" >> $SFLFN
 printf "Note: When examining multiple Scripts/Languages, not all suspect fonts may appear.\n" >> $SFLFN
 printf "$MiniSeparator\n\n" >> $SFLFN
 printf "The following directory tree(s) were examined: $Where2Look\n\n" >> $SFLFN
fi # Done: if [$SuspectGen == 1]

inspectFont() # Lists info about each font containing the specified HexCode(s)
 {
 ((FontsChecked++)) # Increment number of fonts examined
 FullMatchFlag=1 # Assume a full match until proven otherwise
 #### This section looks in each font for one or more specific characters from a particular script:
 CSetMatch=$(fc-match $Location/$DirName$fontf charset)
 for HexCode2Find in $TestCodeList; do # Examine each hex code group in turn
 for OneCode in $HexCode2Find; do # Check each hex code in $TestCodeList
 if [$debug == 'ON']; then printf "%40s" "Checking $OneCode in $fontf: "; fi
 # Use ttfdump to find out if this font contains the hex code sequences we're currently looking for.
 # SymLinks cause errors here, so send them to the bit bucket: I'm too lazy to extract all link info
 # since only one link was installed by my OS as a fallback for Japanese, which I don't use. YMMV
 if TmpOut=$(ttfdump -t cmap $Location/$DirName$fontf 2>/dev/null | grep $HexCode2Find); then
 Success="Yes" # Success contingent on entire loop
 if [$debug == 'ON']; then echo $OneCode " found ..."; fi
 else
 Success="No" # Any "No" causes a failure for this font
 if [$debug == 'ON']; then echo $OneCode " NOT found: skipping to next font ..."; fi
 break 2 # If ANY Code not found, exit both
 fi # Done: if TmpOut=$(ttfdump -t cmap ...
 done # Done: for OneCode in $HexCode2Find
 done # Done: for HexCode2Find in $TestCodeList
 if ["$Success" = "Yes"]; then # If ALL HexCodes in TestCodeList found
 ((FontsMatched++)) # Increment Num of fonts w/all hex codes
 printf "$Fmt" $fontf "(located in:" $Location/$DirName")"
 printf "%38s %s\n" " " "Potential match $FontsMatched of $FontsChecked Fonts checked so far... "
 # The echo below is used as an intermediary to remove leading spaces from fc-query output line
 FntSty=$(echo $(fc-query "$Location/$DirName$fontf" | \
 grep "style" | \
 sed s/"style:"// | \
 sed s/"stylelang*"//) | \
 cut -c 1-72) # Trim the output for screen display
 FntSlt=$(fc-query "$Location/$DirName$fontf" | grep "slant" | sed s/"slant:"//) #
 FntWgt=$(fc-query "$Location/$DirName$fontf" | grep "weight" | sed s/"weight:"//) #
 FntWid=$(fc-query "$Location/$DirName$fontf" | grep "width" | sed s/"width:"//) #
 printf "%36s %s\n" " " " Font Style begins: $FntSty"
 FntSltWgtWid=$(echo $FntSlt","$FntWgt", and"$FntWid);
 printf "%36s %36s %6s, %8s and %8s\n" " " " Font Slant, Weight, and Width are:" \
 $FntSlt $FntWgt $FntWid

 if [$FODTGen == 1]; then # If an .fodt file was requested
 writeSample "$fontf contains the requested character(s) ..." \
 "$fontf is located in: $Location/$DirName" \
 "Font Slant, Weight, and Width are: $FntSltWgtWid" \
 "$SampleText" # Report this font in the output fodt
 fi # Done:if [$FODTGen == 1]

 #### Now check the Language Support reported by this font to see if it's correct
 LangIdx=0 # Language Code: Index for array
 for OneCode in $LangCodeList; do # Check each language to be reported
 ((LangIdx++)) # Increment lang code index
 PLFSwitch=0 # PerLangFoundSwitch limits to 1 match
 if TmpOut=$(fc-query "$Location/$DirName$fontf" | grep "|$OneCode|") # Does fc-match find OneCode
 then
 printf "$Fmt" " " "√ fc-query correctly reports the ISO 639-1 Language Code: '$OneCode'"
 if [$PLFSwitch == 0]; then # So we don't double count errors
 ((LangsMatched[LangIdx]++))
 printf "$Fmt" " " \

 " ...match number ${LangsMatched[LangIdx]} for the ISO 639-1 Language Code '$OneCode'"
 ((PLFSwitch++)) # Could just be set to 1
 fi
 else
 # Don't print a negative result if this is a fake language (e.g. currency, music symbols, etc.)
 if [$OneCode != '99']; then
 # echo -en $ErrColor # This works stand-alone but not in script, and it doesn't work with printf
 # ErrColor='\e[1;41;37m' #(Red on White) # # NmlColor='\e[27m' # echo -en $ErrColor
 printf "$Fmt" ">>" "X fc-query FAILED TO REPORT the ISO 639-1 Language Code '$OneCode'"
 FullMatchFlag=0 # No Failures will be added to list
 if [$debug == 'ON']; then echo "FullMatchFlag set back to "$FullMatchFlag; fi
 if [$SuspectGen == 1]; then # Switch set at beginning of this script
 printf "For '$OneCode': $Location/$DirName$fontf " >> $SFLFN
 printf "FAILED TO REPORT this ISO 639-1 Language Code.\n" >> $SFLFN
 fi # Done: if [$SuspectGen == 1]
 else
 printf "$Fmt" " " "- Code '$OneCode' is not a language, so no language reporting was attempted."
 fi # Done: if [$OneCode != '99']
 ((LangMatchFailures++)) # Increment Num fonts lacking lang code
 fi # Done: if TmpOut=$(fc-match...
 done # Done: for OneCode in $LangCodeList

 #### Check the Open Type Layout capability for this font (can be in both TrueType and OpenType fonts)
 OTCapIdx=0 # OpenType Capabilities: Index for array
 for OneCap in $OTFCapList; do # Check OTF capability for each font
 ((OTCapIdx++))
 POCFSwitch=0 # PerOtfCapFoundSwitch limits to 1 match
 if TmpOut=$(fc-query "$Location/$DirName$fontf" | grep "capability:\(.*\)otlayout:$OneCap")
 then
 printf "$Fmt" " " "√ fc-query correctly reports ISO 15924 Script Support Code: '$OneCap'"
 if [$POCFSwitch == 0]; then # So we don't double count matches
 ((OTFMatches[OTCapIdx]++))
 printf "$Fmt" " " \
 " ...match number ${OTFMatches[OTCapIdx]} for the ISO 15924 Script Code '$OneCap'"
 ((POCFSwitch++)) # Could just be set to 1
 fi
 else
 printf "$Fmt" ">>" "X fc-query FAILED TO REPORT Script Support for ISO 15924 code: '$OneCap'"
 ((OTFMatchFailures[OTCapIdx]++)) # Increment Num fonts lacking OTF Caps
 if [$SuspectGen == 1]; then # Switch set at beginning of this script
 printf "For '$OneCap': $Location/$DirName$fontf: " >> $SFLFN
 printf "Font doesn't report Script Support for this ISO 15924 Code.\n" >> $SFLFN
 fi # Done: if [$SuspectGen == 1]
 FullMatchFlag=0 # No Failures will be added to list
 fi # Done: if TmpOut=$(fc-match...
 done # Done: for OneCap in $OTFCapList

 #### Now check the Character Set Map reported by this font to see if the expected CMap is available
 CMMIdx=0 # Character Map Matches: Index for array
 for CMap in $CMapList; do
 ((CMMIdx++))
 PFCMFSwitch=0 # PerFontCMapFoundSwitch is a SWITCH
 Seg=$(echo $CMap | cut -c 1-25) # Truncated version for display only
 if CMap=$(fc-query "$Location/$DirName$fontf" | grep "$CMap"); then
 printf "$Fmt" " " \
 "√ fc-query correctly found a Character Map Segment beginning '$Seg'"
 if [$PFCMFSwitch == 0]; then # So we don't double count matches
 ((CMapsMatched[CMMIdx]++)) # Increment number of charsets found
 printf "$Fmt" " " \
 " ...match number ${CMapsMatched[CMMIdx]} for the Character Set Segment beginning '$Seg'"
 # TO DO (Maybe): HERE we need to update the counter for each char map within the font !!
 ((PFCMFSwitch++)) # Could just be set to 1
 fi # Done: if [PFCMFSwitch == 0]
 else
 #### THIS IS ALL IN FAILURE MODE: LINE CONTAINING CMap couldn't be found; explain what was found
 ((CMapMatchFailures++)) # Increment number of charsets NOT found
 FullMatchFlag=0 # No Failures will be added to list
 printf "$Fmt" ">>" "X fc-query FAILED TO FIND A CHARACTER MAP SEGMENT DEFINED AS '$Seg'"
 SegHdr=$(echo $Seg | cut -c 1-5) # Truncate to just line number requested
 ActualLine=$(echo $(fc-query "$Location/$DirName$fontf" | grep "$SegHdr"))
 # Match failure might be an existing line that doesn't match or no relevant line at all
 if Alternate=$(fc-query "$Location/$DirName$fontf" | grep "$SegHdr"); then
 printf "$Fmt" " " " ...found: '$ActualLine'" # Show existing line for comparison
 if [$SuspectGen == 1]; then # Switch set at beginning of this script
 printf "For '$SegHdr': $Location/$DirName$fontf: " >> $SFLFN
 printf "Font doesn't match the Character Map specified.\n" >> $SFLFN
 printf " Character Map reported was '$ActualLine'.\n" >> $SFLFN
 printf " This might be due to one or more missing characters" >> $SFLFN
 printf " in the font's bitmap.\n" >> $SFLFN
 fi # Done: if [$SuspectGen == 1]
 else
 printf "$Fmt" " " " ...No relevant line for '$SegHdr' was found for this font."
 if [$SuspectGen == 1]; then # Switch set at beginning of this script
 printf "For '$SegHdr': $Location/$DirName$fontf: " >> $SFLFN
 printf "No relevant line beginning with '$SegHdr' was found.\n" >> $SFLFN

 fi # Done: if [$SuspectGen == 1]
 fi # Done: Alternate=$(fc-query "$Locat...
 fi # Done: if CMap=$(fc-query "$Locati...
 done # Done: for CSet in $CMapList; do
 if [$FullMatchFlag == 1]; then # Full match flag still ON for this font?
 ((++FullMatchListIdx))
 FullMatchList[FullMatchListIdx]=$Location/$DirName$fontf
 printf "%38s %s\n" " " \
 "Complete Match $FullMatchListIdx of the $FontsMatched potential matches so far... "
 else
 if [$debug == 'ON']; then echo "No Full Match for "$Location/$DirName$fontf; fi
 fi
 echo $MinorSeparator
 else
 if [$debug == 'ON']; then echo $Location/$DirName$fontf": Font Number:" $FontsChecked; fi
 fi # Done: if ["$Success" = "Yes"]

 } # Done: inspectFont() function

MAIN FONT EXAMINATION ROUTINE: Calls inspecFont() to examine each font in each location:
echo -e "Fonts containing the Unicode Character(s):"$CharMsg # RTL characters are in REVERSE ORDER
echo "...............Looking in directory Trees: "$Where2Look
echo "............Checking for Language code(s):"$LangCodeList
echo "......Checking for Script Support code(s):"$OTFCapList
echo $MajorSeparator
for Location in $Where2Look # Font directories defined at beginning
do # Examine each font directory in turn
 cd $Location # Switch to next font directory
 # First check any fonts in this parent directory
 fontlist=$(ls -1L | grep -i \.[ot]tf) # Create a list of local ttf/TTF files
 # As near as I can tell, all Open Type fonts may be either .ttf or .otf, but not all .ttf files are (or
 # have) Open Type capabilities (e.g. older .ttf fonts). The difference between fonts with Open Type
 # capabilities is that those with a .ttf extension use quadratic Bézier splines curves, and those with an
 # .otf extension use cubic Bézier spline curves (a remnant of the older PostScript Type 1 designs).
 # Beware of .ttf files that report no Open Type capabilities; they may be outdated and need replacement!
 # A collection of TrueType files packaged together has the suffix TTC, but I don't look at them here.
 for fontf in $fontlist; do # Examine each font file in turn
 inspectFont $fontlist
 done # Done: for fontf in $fontlist
 # Now do all of the above again for each font in each subdirectory (effective limit is 2 levels!)
 DirList=$(ls -d */) # Create a list of subdirectories
 for DirName in $DirList; do # Examine each subdirectory in turn
 fontlist=$(ls -1 $DirName | grep -i \.ttf) # Create a list of local ttf/TTF files
 for fontf in $fontlist; do # Examine each font file in turn
 inspectFont $fontlist
 done # Done: for fontf in $fontlist
 done # Done: for DirName in $DirList
done # Done: for Location in $Where2Look

Begin printing the on-screen summary of the font examination
echo $MajorSeparator
printf "* Search Result:%5d Truetype/Opentype files were examined for the specified characters.\n" \
 $FontsChecked
if [$FODTGen == 1]; then # If an .fodt file was requested
 printf " <text:p >* Search Result:%5d Truetype files were examined, and</text:p>\n" \
 $FontsChecked >> $DemoDoc
fi # Done:if [$FODTGen == 1]

Print results of the character searches in the fonts ...
printf " %5d of those files (listed above) contain all the character(s)$CharMsg.\n" \
 $FontsMatched
echo -e " Text Sample(s) for this run: '$SampleText '" # Incorrectly orders RTL Words
if [$FODTGen == 1]; then # If an .fodt file was requested
 printf " <text:p > %5d of those files contain all the character(s)$CharMsg.</text:p>\n" \
 $FontsMatched >> $DemoDoc
fi # Done:if [$FODTGen == 1]
printf "%21s %s\n" " " $MiniSeparator

for LangIdx in `seq 1 $NumArgsAccepted`; do # Check Lang for each possible argument
 FinalLangCount=${LangsMatched[$LangIdx]}
 LangCode2=${LangList[$LangIdx]}
 LangAbbrev=${LangAbbrevList[$LangIdx]}
 if [$LangCode != '99']; then # Skip for fake languages (math, etc.)
 if [$LangMatchFailures != 0]; then
 if [$FinalLangCount != 0]; then
 printf " WARNING:%5d of those $FontsMatched files contained the Language Code '$LangAbbrev'\
 ($LangCode2), BUT $LangMatchFailures FILE(s) DID NOT!\n" ${LangsMatched[$LangIdx]}
 if [$FODTGen == 1]; then # If an .fodt file was requested
 printf " <text:p > WARNING:%5d of those $FontsMatched files contained the Language Code '\
$LangAbbrev' ($LangCode2), BUT $LangMatchFailures FILE(s) DID NOT!</text:p>\n" \
 ${LangsMatched[$LangIdx]} >> $DemoDoc
 fi # Done:if [$FODTGen == 1]
 else
 if [$LangAbbrev]; then
 printf " %5d of those $FontsMatched files contained the Language Code \

'$LangAbbrev' ($LangCode2).\n" ${LangsMatched[$LangIdx]}
 if [$FODTGen == 1]; then # If an .fodt file was requested
 printf "%32s %-5s %52s %s\n" " <text:p > "${LangsMatched[$LangIdx]} \
 " of those $FontsMatched files contained the Language Code '$LangAbbrev' ($LangCode2).</text:p>" \
 >> $DemoDoc
 fi # Done:if [$FODTGen == 1]
 fi # Done: if [$LangAbbrev]
 fi # Done: if [$FinalLangCount != 0]
 else
 if [$LangAbbrev]; then
 printf " %5d of those $FontsMatched files contained the Language Code '$LangAbbrev'\
 ($LangCode2).\n" ${LangsMatched[$LangIdx]}
 if [$FODTGen == 1]; then # If an .fodt file was requested
 printf " <text:p > %5d of those $FontsMatched files contained the Language Code\
 '$LangAbbrev' ($LangCode2).</text:p>\n" ${LangsMatched[$LangIdx]} >> $DemoDoc
 fi # Done:if [$FODTGen == 1]
 fi # Done: if [$LangAbbrev]
 fi # Done: if [$LangMatchFailures != 0]
 fi # Done: if [$LangCode != '99']
done # Done: for LangIdx in `seq 1 $NumArgs...
printf "%21s %s\n" " " $MiniSeparator # Separate Lang Code stats from OTFCap

Print results of the Open Type language support in the fonts ...
OTCapIdx=0 # OpenType Capabilities: Index for array
for OneCap in $OTFCapList; do # Report OTF capability for each font
 ((OTCapIdx++))
 OTFMatchSuccesses=${OTFMatches[$OTCapIdx]}
 MissingOTFMatches=${OTFMatchFailures[$OTCapIdx]}
 if [$MissingOTFMatches != 0]; then
 printf " WARNING:%5d of those $FontsMatched files contained the ISO 15924 Script Code '$OneCap',\
 BUT: $MissingOTFMatches FILE(s) DID NOT!\n" $OTFMatchSuccesses
 if [$FODTGen == 1]; then
 printf " <text:p > WARNING:%5d of those $FontsMatched files contained the ISO 15924 Script\
 Code '$OneCap', BUT: $MissingOTFMatches FILE(s) DID NOT!</text:p>\n" $OTFMatchSuccesses >> $DemoDoc
 fi # Done:if [$FODTGen == 1]
 else
 printf " %5d of those $FontsMatched files contained the ISO 15924 Script Code\
 '$OneCap'.\n" $OTFMatchSuccesses
 if [$FODTGen == 1]; then
 printf " <text:p > %5d of those $FontsMatched files contained the ISO 15924 Script\
 Code '$OneCap'.</text:p>\n" $OTFMatchSuccesses >> $DemoDoc
 fi # Done:if [$FODTGen == 1]
 fi # Done: if [$MissingOTFMatches != 0]
done # Done: for OneCap in $OTFCapList
printf "%21s %s\n" " " $MiniSeparator # Separate OTFCap stats from CharMap

Print results of the character set queries to the fonts ...
CMMIdx=0 # Character Map Matches: Index for array
for CMap in $CMapList; do
 ((CMMIdx++))
 CMMatchSuccesses=${CMapsMatched[$CMMIdx]}
 MissingCMMatches=${CMapMatchFailures[$CMMIdx]}
 Seg=$(echo $CMap | cut -c 1-35) # Truncated version for display only
 MiniSeg=$(echo $CMap | cut -c 1-13) # Truncated version for WARNINGs only
 if [$MissingCMMatches != 0]; then
 printf " WARNING:%5d of those $FontsMatched files contained the Character Map segment beginning\
 '$MiniSeg', BUT: $MissingCMMatches FILE(s) DID NOT!\n" $CMMatchSuccesses
 if [$FODTGen == 1]; then
 printf " <text:p > WARNING:%5d of those $FontsMatched files contain the Character Map segment\
 beginning '$Seg', BUT: $MissingCMMatches FILE(s) DID NOT!</text:p>\n" $CMMatchSuccesses >> $DemoDoc
 fi # Done:if [$FODTGen == 1]
 else
 if [$MissingCMMatches]; then
 printf " %5d of those $FontsMatched files contained the Character Map segment\
 beginning '$Seg'.\n" $CMMatchSuccesses
 if [$FODTGen == 1]; then
 printf " <text:p > %5d of those $FontsMatched files contained the Character Map\
 segment beginning '$Seg'.</text:p>\n" $CMMatchSuccesses >> $DemoDoc
 fi # Done:if [$FODTGen == 1]
 fi
 fi
done # Done: for CSet in $CMapList; do

Generate a file listing all of the matches that SUPPOSEDLY meet all our criteria:
if [$FPassGen == 1]; then # Switch set at beginning of this script
 for FNC in `seq 1 $ArgsFound`; do # Build out the file name
 LLFN=$LLFN"_"${LangList[$FNC]}
 done
 LLFN=$Origin"/"$LLFN".txt" # Add path and extension for permissions
 printf "%21s %s\n" " " $MiniSeparator # Separate reporting section
 printf " > Created file $LLFN listing complete matches.\n" # Notify user of file name.
 printf "This file is: " $LLFN > $LLFN
 printf "Suitable Fonts for mixing multiple Scripts/Languages: \n" >> $LLFN
 printf "$MiniSeparator\n" >> $LLFN
 printf "The following directory tree(s) were examined: $Where2Look\n" >> $LLFN

 printf "\n" >> $LLFN
 printf " $FullMatchListIdx fonts found of the $FontsChecked font files examined:\n" >> $LLFN
 printf " a) contained the characters: $CharMsg\n" >> $LLFN
 printf " b) reported the corresponding Language Code(s): $LangCodeList\n" >> $LLFN
 printf " c) reported the corresponding Script Code(s): $OTFCapList\n" >> $LLFN
 printf " d) matched all the defined Character Map Segment(s)\n" >> $LLFN
 printf " $MiniSeparator\n" >> $LLFN
 printf "\n" >> $LLFN
 printf " A List of those potentially usable Font files (for further evaluation) is:\n" >> $LLFN
 for Id in `seq 1 $FullMatchListIdx`; do # Create the actual list of fonts
 printf "%5s: %s\n" $Id ${FullMatchList[$Id]} >> $LLFN
 done
fi # Done: if [$FPassGen == 1]

Indicate on screen that the list of potentially faulty fonts was created and give its name
if [$SuspectGen == 1]; then # Switch set at beginning of this script
 printf "%21s %s\n" " " $MiniSeparator # Separate reporting section
 printf " > Created file $SFLFN listing of possibly faulty fonts.\n"
fi # Done: if [$SuspectGen == 1]

echo $MajorSeparator # Screen Report completed!

Here we complete the .fodt output file with a summary; with echo, actual spaces can be used with echo.
if [$FODTGen == 1]; then # Switch set at beginning of this script
 echo ' <text:p/>' >> $DemoDoc
 echo ' </office:text>' >> $DemoDoc
 echo ' </office:body>' >> $DemoDoc
 echo '</office:document>' >> $DemoDoc
fi # Done if [$FODTGen == 1]

END OF CODE HERE

	Bash Script for Evaluating Font Collections against one or more Languages
	The script below should run on any contemporary Linux system. Copy the script into a new text file, name it FindFont (or whatever works for you). Placing it in a location that is already part of your $PATH will make life easier; be sure to set the execute flag (e.g. using “sudo chmod” or an equivalent command from a file manager GUI). Instructions are found in the early comments of the code itself as well as in the earlier part of this document.

