LinuxQuestions.org
Help answer threads with 0 replies.
Go Back   LinuxQuestions.org > Forums > Linux Forums > Linux - Security
User Name
Password
Linux - Security This forum is for all security related questions.
Questions, tips, system compromises, firewalls, etc. are all included here.

Notices


Reply
  Search this Thread
Old 11-28-2010, 03:01 AM   #1
syg00
LQ Veteran
 
Registered: Aug 2003
Location: Australia
Distribution: Lots ...
Posts: 21,236

Rep: Reputation: 4150Reputation: 4150Reputation: 4150Reputation: 4150Reputation: 4150Reputation: 4150Reputation: 4150Reputation: 4150Reputation: 4150Reputation: 4150Reputation: 4150
Cracking SHA1 with EC2 GPU instances.


Had to happen I guess - cheap cracking on the cloud; see here

Last edited by syg00; 11-28-2010 at 03:02 AM. Reason: cleanup
 
Old 11-28-2010, 03:19 AM   #2
win32sux
LQ Guru
 
Registered: Jul 2003
Location: Los Angeles
Distribution: Ubuntu
Posts: 9,870

Rep: Reputation: 380Reputation: 380Reputation: 380Reputation: 380
Honestly, I don't get what all the fuss is about. This news story just serves as a reminder of the importance of using strong passwords. The whole point of having strong password requirements is to prevent this sort of thing from being feasible. I gave the article(s) a quick glance and everything I read seemed to indicate this was simply brute force attack. As such, I don't even know why SHA-1 should be singled-out, as weak passwords will be weak passwords regardless of the hash algorithm used.

I'd be interested in seeing the dollar amount of the bill if this exercise was redone using strong passwords.

Last edited by win32sux; 11-28-2010 at 03:24 AM.
 
Old 11-29-2010, 08:19 PM   #3
Matir
LQ Guru
 
Registered: Nov 2004
Location: San Jose, CA
Distribution: Debian, Arch
Posts: 8,507

Rep: Reputation: 128Reputation: 128
It's been stated that the passwords were from 1-6 characters. Let's assume it's alphanumeric, mixed-case, no special characters. This gives us a keyspace of 52^6, or about 10^11. This was searched in 49 minutes. (In reality, they probably only searched half the keyspace, but let's assume they did the whole thing). Now let's assume you have a fairly secure password of 10 characters from the same set. 52^10 is now 10^17, which will take 1 million times as long to search (10^17/10^11=10^6). Suddenly, their 49 minutes is 816,667 hours (important because at the article's stated $2.10/hour, this costs $1,715,000 to crack) or 93 computer-years. My password (18 characters, mixed case, numeric, and symbols) would take a search of 58^18 ~= 10^31 = 10^20 times as long at a cost of $171,500,000 Trillion Dollars.

Oh, and did I mention that most real-world implementations salt passwords so you can't go and "kill 2 birds with one stone"? They'll have to crack each password separately.

Nice proof of concept, no real threat here. Botnets could've done this long ago, and for free(ish).
 
Old 11-30-2010, 06:15 AM   #4
win32sux
LQ Guru
 
Registered: Jul 2003
Location: Los Angeles
Distribution: Ubuntu
Posts: 9,870

Rep: Reputation: 380Reputation: 380Reputation: 380Reputation: 380
I get different numbers for some reason. My total dollar amount for a 10-character password comes out to $460,554,713. I'm using the 128 ASCII printable characters here, but it shouldn't make a difference as we're using the same completion time, so the comparison remains equal.

Keyspace for weak password from news article: 128^6 = 4,398,046,511,104
Time it took to crawl the keyspace*: 0.817 hours.
Attempts per hour: (128^6) / 0.817 = 5,383,165,864,264

Keyspace for a half-decent password of 10-characters: 128^10 = 1,180,591,620,717,411,303,424
Time it would take to crawl the keyspace at the above rate**: (128^10) / 5,383,165,864,264 = 219,311,768 hours (approx. 25,000 years).
At $2.10/hour that's: 460,554,713.00 USD

Using a 12-character password, which I believe is what most computer books today suggest as a minimum, would get us:
(128^12) / 5,383,165,864,264 = 410,183,104 years and 7,545,728,399,102.00 USD







* Rather to crack, which like you said doesn't require crawling the entire keyspace, but I'm making the same assumption as you for simplicity.
** Yes, the rate would change in reality as the hardware would be scaled or a botnet used instead, but bare with me.

Last edited by win32sux; 11-30-2010 at 06:33 AM.
 
Old 11-30-2010, 06:41 AM   #5
Matir
LQ Guru
 
Registered: Nov 2004
Location: San Jose, CA
Distribution: Debian, Arch
Posts: 8,507

Rep: Reputation: 128Reputation: 128
Your math is different because you're assuming a different character set. The time it takes increases exponentially with a larger character set, but your rate of attempts per hour is linear.

Also note (just for discussion purposes) that you cannot use the entire 128 characters of ASCII in a password in most systems. Characters such as \0, \r, and \n are almost certainly rejected, and many web-based apps choke on white space, etc.
 
1 members found this post helpful.
Old 11-30-2010, 07:24 AM   #6
win32sux
LQ Guru
 
Registered: Jul 2003
Location: Los Angeles
Distribution: Ubuntu
Posts: 9,870

Rep: Reputation: 380Reputation: 380Reputation: 380Reputation: 380
Quote:
Originally Posted by Matir View Post
Your math is different because you're assuming a different character set. The time it takes increases exponentially with a larger character set, but your rate of attempts per hour is linear.
Crap, you're right! Thanks for reminding me how much I suck at math!

Yeah, I went ahead and used my same calculation using 40 characters (a random number I picked) instead of 128 and it confirmed the difference which I didn't expect. I mean, I know the difficulty increases exponentially, but my fault was in assuming that as long as we keep the total time the same we could draw the same conclusions. Clearly we can't, as you've indicated. Thanks for setting me straight!

FWIW, here's what my math looks like with 40 instead of 128:

Keyspace for weak password from news article: 40^6 = 4,096,000,000
Time it took to crawl the keyspace*: 0.817 hours.
Attempts per hour: (40^6) / 0.817 = 5,013,463,892

Keyspace for a half-decent password of 10-characters: 40^10 = 10,485,760,000,000,000
Time it would take to crawl the keyspace at the above rate**: (40^10) / 5,013,463,892 = 2,091,520 hours (approx. 239 years).
At $2.10/hour that's: 4,392,192 USD

Using a 12-character password, which I believe is what most computer books today suggest as a minimum, would get us:
(40^12) / 5,013,463,892 = 382,012 years and 7,027,507,200 USD
 
Old 11-30-2010, 07:35 AM   #7
win32sux
LQ Guru
 
Registered: Jul 2003
Location: Los Angeles
Distribution: Ubuntu
Posts: 9,870

Rep: Reputation: 380Reputation: 380Reputation: 380Reputation: 380
While we're on the subject of math, I'd like to ask you a question about this. Normally when I think about keyspaces it's with regards to actual encryption keys. Hence, for example, a 128-bit keyspace is exactly that: a 128-bit keyspace (2^128). There's gonna be 128 bits in it. In this case, however, all we know is that the password will be between 1 and 6 characters. So, we could have some that are really short, with the constraint being that the characters don't have any blanks before or after them. Like, for example, we could have a 3-character password but the three characters would need to be at the start. This tells me that calculating the keyspace would be different than with actual keys, where it's either all or nothing. I'm having flashbacks of math class where we did permutations and combinations, but I'm not sure if that's the way to go about it. Any light you could shed on this would be great.
 
Old 11-30-2010, 09:12 AM   #8
H_TeXMeX_H
LQ Guru
 
Registered: Oct 2005
Location: $RANDOM
Distribution: slackware64
Posts: 12,928
Blog Entries: 2

Rep: Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301
Meh, I think the more important thing to worry about with md5 and sha1 is collisions, that's the main reason to change to something else.
 
Old 11-30-2010, 06:11 PM   #9
anomie
Senior Member
 
Registered: Nov 2004
Location: Texas
Distribution: RHEL, Scientific Linux, Debian, Fedora
Posts: 3,935
Blog Entries: 5

Rep: Reputation: Disabled
Quote:
Originally Posted by syg00
Had to happen I guess - cheap cracking on the cloud; see here
Some of the user comments that followed the actual experiment/essay were pretty enlightening. Main takeaway: SHA1 may not be perfect, but the author did not exploit any cryptanalysis of it. Instead, he helped reinforce that brute forcing 6-byte passwords in rapid fashion is within the capabilities of us peasants.

Use strong passwords.
 
Old 11-30-2010, 06:26 PM   #10
Matir
LQ Guru
 
Registered: Nov 2004
Location: San Jose, CA
Distribution: Debian, Arch
Posts: 8,507

Rep: Reputation: 128Reputation: 128
Quote:
Originally Posted by win32sux View Post
While we're on the subject of math, I'd like to ask you a question about this. Normally when I think about keyspaces it's with regards to actual encryption keys. Hence, for example, a 128-bit keyspace is exactly that: a 128-bit keyspace (2^128). There's gonna be 128 bits in it. In this case, however, all we know is that the password will be between 1 and 6 characters. So, we could have some that are really short, with the constraint being that the characters don't have any blanks before or after them. Like, for example, we could have a 3-character password but the three characters would need to be at the start. This tells me that calculating the keyspace would be different than with actual keys, where it's either all or nothing. I'm having flashbacks of math class where we did permutations and combinations, but I'm not sure if that's the way to go about it. Any light you could shed on this would be great.
It's basically the same thing either way. With a 128-bit encryption key, you have 128 values that can be one of 2 possibilities (0 or 1). This is 2^128. For text-based passwords, we usually think in characters rather than bits. If you have 6 characters that can each have one of 62 values (26 lower case + 26 upper case + 10 digits), it's 62^6. In other words, it's [possibilities for character 1] * ... * [possibilites for character n].

Some systems involve "must start with a letter" or similar. For a 6-character password that must start with a letter, you can then assume it's 52*62^5. For any sort of speed analysis, these restrictions are generally ignored.

I like to convert the size of values to base 10 for most discussion, as most people are fairly comfortable talking in base 10. For anyone who hasn't been in a math class recently, that's 10^log(ORIGINAL). So, in this case, I do 10^log(62^6) == 10^11.
 
Old 11-30-2010, 06:28 PM   #11
Matir
LQ Guru
 
Registered: Nov 2004
Location: San Jose, CA
Distribution: Debian, Arch
Posts: 8,507

Rep: Reputation: 128Reputation: 128
Quote:
Originally Posted by H_TeXMeX_H View Post
Meh, I think the more important thing to worry about with md5 and sha1 is collisions, that's the main reason to change to something else.
Collisions are a concern for digital signatures, but not generally for passwords. On a strong hash, the odds of there being a collision that is simpler than your real password (i.e., will be found first by a dictionary or brute force attack) is nearly 0.
 
Old 12-01-2010, 04:11 AM   #12
H_TeXMeX_H
LQ Guru
 
Registered: Oct 2005
Location: $RANDOM
Distribution: slackware64
Posts: 12,928
Blog Entries: 2

Rep: Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301Reputation: 1301
I was just considering the possibility that the processing power would be used to generate files with the same checksum and then upload them to distribute malware.

For passwords, indeed the most important thing is to have a strong password. However, it's one thing to say this, and it's another thing to get people to use strong passwords and remember them.
 
Old 12-01-2010, 05:45 AM   #13
win32sux
LQ Guru
 
Registered: Jul 2003
Location: Los Angeles
Distribution: Ubuntu
Posts: 9,870

Rep: Reputation: 380Reputation: 380Reputation: 380Reputation: 380
Quote:
Originally Posted by Matir View Post
It's basically the same thing either way. With a 128-bit encryption key, you have 128 values that can be one of 2 possibilities (0 or 1). This is 2^128. For text-based passwords, we usually think in characters rather than bits. If you have 6 characters that can each have one of 62 values (26 lower case + 26 upper case + 10 digits), it's 62^6. In other words, it's [possibilities for character 1] * ... * [possibilites for character n].
Right, but what I mean is that with crypto keys the length remains the same. With passwords, we have cases where the length can be anywhere between X and Y. For example, say I have a 3-bit key. The keyspace (2^3 = 8) would look something like:

000, 001, 011, 111, 110, 100, 101, 010.

...and that's it.

If, OTOH, we say the key could be anywhere between 1 and 3 bits, then the possibilities increase, right? Like, now it could also be:

00, 01, 10, 11 and 1, 0.

...I think this is calculated as: (2^3) + (2^2) + 2 = 14 ...but what's the formula for this? Using your 62-character example, how can we quickly determine the possibilities for a variable length password such as in this case, where it was 1-6 characters? I reckon the result should be the same as manually breaking it down as: (62^6) + (62^5) + (62^4) + (62^3) + (62^2) + 62.



EDIT: I guess what I'm saying/asking is that I know how to automate this sort of thing using a programming language (where you ask the user to enter the min/max lengths, etc.), but I'm curious about how to do it if all I have is a calculator. Like, say I want to quickly calculate the keyspace for a password that allows 94 ASCII characters, and has a length between 12 and 36. How would I do that?

Last edited by win32sux; 12-01-2010 at 07:57 AM.
 
Old 12-03-2010, 04:19 PM   #14
win32sux
LQ Guru
 
Registered: Jul 2003
Location: Los Angeles
Distribution: Ubuntu
Posts: 9,870

Rep: Reputation: 380Reputation: 380Reputation: 380Reputation: 380
Quote:
Originally Posted by win32sux View Post
I guess what I'm saying/asking is that I know how to automate this sort of thing using a programming language (where you ask the user to enter the min/max lengths, etc.), but I'm curious about how to do it if all I have is a calculator. Like, say I want to quickly calculate the keyspace for a password that allows 94 ASCII characters, and has a length between 12 and 36. How would I do that?
Okay, I think I found one calculator-compatible shortcut, and I'm posting it in case it helps anyone else:

(CharacterSetLength^(PasswordMaxLength+1)-CharacterSetLength^PasswordMinLength)/(CharacterSetLength-1)

So, for the scenario I presented in the quoted text above (94 ASCII, length of 12 to 36), the calculation would go like:

Code:
(94^(36+1)-94^12)/(94-1) = 108,955,117,812,980,031,260,829,358,977,018,849,062,057,332,069,268,020,020,476,008,906,141,696
...which AFAICT checks-out if we do things manually:

Code:
A = 94^12 = 475920314814253376475136
B = 94^13 = 44736509592539817388662784
C = 94^14 = 4205231901698742834534301696
D = 94^15 = 395291798759681826446224359424
E = 94^16 = 37157429083410091685945089785856
F = 94^17 = 3492798333840548618478838439870464
G = 94^18 = 328323043381011570137010813347823616
H = 94^19 = 30862366077815087592879016454695419904
I = 94^20 = 2901062411314618233730627546741369470976
J = 94^21 = 272699866663574113970678989393688730271744
K = 94^22 = 25633787466375966713243825003006740645543936
L = 94^23 = 2409576021839340871044919550282633620681129984
M = 94^24 = 226500146052898041878222437726567560344026218496
N = 94^25 = 21291013728972415936552909146297350672338464538624
O = 94^26 = 2001355290523407098035973459751950963199815666630656
P = 94^27 = 188127397309200267215381505216683390540782672663281664
Q = 94^28 = 17683975347064825118245861490368238710833571230348476416
R = 94^29 = 1662293682624093561115110980094614438818355695652756783104
S = 94^30 = 156255606166664794744820432128893757248925435391359137611776
T = 94^31 = 14688026979666490706013120620116013181398990926787758935506944
U = 94^32 = 1380674536088650126365233338290905239051505147118049339937652736
V = 94^33 = 129783406392333111878331933799345092470841483829096637954139357184
W = 94^34 = 12199640200879312516563201777138438692259099479935083967689099575296
X = 94^35 = 1146766178882655376556940967051013237072355351113897892962775360077824
Y = 94^36 = 107796020814969605396352450902795244284801403004706401938500883847315456

A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W+X+Y = 108955117812980031260829358977018849062057332069268020020476008906141696

Last edited by win32sux; 12-03-2010 at 04:31 PM.
 
Old 12-03-2010, 05:54 PM   #15
Matir
LQ Guru
 
Registered: Nov 2004
Location: San Jose, CA
Distribution: Debian, Arch
Posts: 8,507

Rep: Reputation: 128Reputation: 128
FWIW, it's essentially irrelevant to consider the minimum length for purposes of calculating runtime. A better way to approach things is to include one more character than there really is as a sort of "null" byte (e.g., a 7-character password can be considered to be an 8-character password with one byte set to NULL).

Your value for 12-36, 94 character set is about 2^235.981. Using the 95 "character set" for length 36 (e.g., 95^36) is about 2^236.514. As you can see, it's pretty close. If you want to get really precise, use the original character set for the minimum length and the +1 for the remaining characters. For example, 94^12*95^(36-12) yields a value of 2^236.332. Of course, just using 94 characters for 36 places (94^36) yields 2^235.965.

The reality is that the largest term dwarfs the smaller terms by so much that it becomes the dominating factor. You can see that in the A-Y values you posted, each one increases by 2 digits, or an approximate factor of 100.
 
1 members found this post helpful.
  


Reply


Thread Tools Search this Thread
Search this Thread:

Advanced Search

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is Off
HTML code is Off



Similar Threads
Thread Thread Starter Forum Replies Last Post
Assign IP address to EC2 cloud pnmanojshenoy Linux - Networking 3 11-17-2010 12:22 PM
linux ec2 drive attach question shritesh Linux - Games 0 08-18-2009 02:21 PM
Mail Server setup on EC2 on Cent OS 5.2 kentor Linux - Software 0 07-02-2009 03:17 PM
Ubuntu, Python, EC2 Question from a Newbie jcrubino Linux - Newbie 1 04-11-2009 12:16 AM
Getting SHA1... Red Guy Linux - Software 0 07-22-2003 10:16 PM

LinuxQuestions.org > Forums > Linux Forums > Linux - Security

All times are GMT -5. The time now is 07:59 AM.

Main Menu
Advertisement
My LQ
Write for LQ
LinuxQuestions.org is looking for people interested in writing Editorials, Articles, Reviews, and more. If you'd like to contribute content, let us know.
Main Menu
Syndicate
RSS1  Latest Threads
RSS1  LQ News
Twitter: @linuxquestions
Open Source Consulting | Domain Registration